
DISSERTATION:

Advancesin Answer SetPlanning
Dipl.-Ing. Axel Polleres

axel@kr.tuwien.ac.at

supervised by

O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Institut für Informationssysteme, Abteilung für Wissensbasierte Systeme

– p.1/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language
Syntax,Semantics

Complexity of Planning in

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

�

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

�

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21

Preliminaries:

Planning Problem: Find a sequence of actions to bring an agent from
an initial state to a goal state

Input: A set of actions (preconditions, effects);

Fluents (state variables) and their

initial values and goal values

Output: Sequence of action sets (discrete notion of time)

Classical Planning (complete knowledge, deterministic actions)

Actions: move(B,L)

Fluents: on(b,table), on(c,a), on(a,table),

occupied(a), ...

initial:

b
c
a

c
b
a

goal:

Non-Classical Planning(Conformant Plans, Conditional Plans, . . .)

b

d

d c
ainitial: goal:

c
a

?

d
b

– p.3/21

Preliminaries:

Planning Problem: Find a sequence of actions to bring an agent from
an initial state to a goal state

Input: A set of actions (preconditions, effects);

Fluents (state variables) and their

initial values and goal values

Output: Sequence of action sets (discrete notion of time)

Classical Planning (complete knowledge, deterministic actions)

Actions: move(B,L)

Fluents: on(b,table), on(c,a), on(a,table),

occupied(a), ...

initial:

b
c
a

c
b
a

goal:

Non-Classical Planning(Conformant Plans, Conditional Plans, . . .)

b

d

d c
ainitial: goal:

c
a

?

d
b

– p.3/21

Preliminaries:

Planning Problem: Find a sequence of actions to bring an agent from
an initial state to a goal state

Input: A set of actions (preconditions, effects);

Fluents (state variables) and their

initial values and goal values

Output: Sequence of action sets (discrete notion of time)

Classical Planning (complete knowledge, deterministic actions)

Actions: move(B,L)

Fluents: on(b,table), on(c,a), on(a,table),

occupied(a), ...

initial:

b
c
a

c
b
a

goal:

Non-Classical Planning(Conformant Plans, Conditional Plans, . . .)

b

d

d c
ainitial: goal:

c
a

?

d
b

– p.3/21

Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs

– p.4/21

Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs

– p.4/21

Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs

– p.4/21

Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs

– p.4/21

Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs

– p.4/21

�

Planning Domainsand Problems

Background Knowledge

	

: A logic program

	

with a single model,

(answer set) defining type information and static knowledge.

Action Description

��

:

fluents:

�
 % fluent declarations

actions:

� � % action type declarations

always:

��� % causation rules + exec. cond’s

initially:

��� % initial state constraints

Planning Domain:

� 	�� �� �

Planning Problem: additional goal

goal:

�� �� �

ground literal(s)

�

; plan length

� � �

.

– p.5/21

Blocks world in

�

initial:

b
c
a

c
b
a

goal:

Background knowledge

�

=

block(a). block(b). block(c).

location(table).

location(L) :- block(L).

!

(Logic Program which has a single model - set of “invariant” facts)

– p.6/21

Blocksworld:

�

Problemdescription
fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always: executable move(B,L) if not occupied(B), not occupied(L), B<>L.

caused on(B,L) after move(B,L).

caused on(B,L1) after move(B,L), on(B,L1), L<>L1.

caused occupied(B) if on(B1,B), block(B).

inertial on(B,L). % Explicit frame axioms!

noConcurrency. % Optionally, parallel actions!

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

Intuitively: Feasible plan is

initial:

b
c
a

c
b
a

goal:

move(c,table); move(b,a); move(c,b) COSTS: 3

– p.7/21

Blocksworld:

�

Problemdescription
fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always: executable move(B,L) if not occupied(B), not occupied(L), B<>L.

caused on(B,L) after move(B,L).

caused "on(B,L1) after move(B,L), on(B,L1), L<>L1.

caused occupied(B) if on(B1,B), block(B).

inertial on(B,L). % Explicit frame axioms!

noConcurrency. % Optionally, parallel actions!

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

Intuitively: Feasible plan is

initial:

b
c
a

c
b
a

goal:

move(c,table); move(b,a); move(c,b) COSTS: 3

– p.7/21

Blocksworld:

�

Problemdescription
fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always: executable move(B,L) if not occupied(B), not occupied(L), B<>L.

caused on(B,L) after move(B,L).

caused "on(B,L1) after move(B,L), on(B,L1), L<>L1.

caused occupied(B) if on(B1,B), block(B).

inertial on(B,L). % Explicit frame axioms!

noConcurrency. % Optionally, parallel actions!

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

Intuitively: Feasible plan is

initial:

b
c
a

c
b
a

goal:

move(c,table); move(b,a); move(c,b) COSTS: 3

– p.7/21

Blocksworld:

�

Problemdescription
fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always: executable move(B,L) if not occupied(B), not occupied(L), B<>L.

caused on(B,L) after move(B,L).

caused "on(B,L1) after move(B,L), on(B,L1), L<>L1.

caused occupied(B) if on(B1,B), block(B).

inertial on(B,L). % Explicit frame axioms!

noConcurrency. % Optionally, parallel actions!

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

Intuitively: Feasible plan is

initial:

b
c
a

c
b
a

goal:

move(c,table); move(b,a); move(c,b) COSTS: 3

– p.7/21

Blocks World in

�

(cont’d)

Incomplete Knowldege: b

d

d c
ainitial: goal:

c
a

?

d
b

initially: total on(d,L).

caused "on(d,c).
% State Axioms:

caused false if on(B,L), on(B,L1), L<>L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.
...

goal: on(a,c),on(c,d),on(d,b),on(b,table)? (4)

Feasible plans:
move(c,d); move(a,c); (no action); (no action) COSTS: 2

move(d,c); move(d,b); move(c,d); move(a,c) COSTS: 4

– p.8/21

Blocks World in

�

(cont’d)

Incomplete Knowldege: b

d

d c
ainitial: goal:

c
a

?

d
b

initially: total on(d,L).

caused "on(d,c).
% State Axioms:

caused false if on(B,L), on(B,L1), L<>L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.
...

goal: on(a,c),on(c,d),on(d,b),on(b,table)? (4)

Feasible plans:
move(c,d); move(a,c); (no action); (no action) COSTS: 2

move(d,c); move(d,b); move(c,d); move(a,c) COSTS: 4

– p.8/21

Semanticsof

�

– Plans
Multi-valued transition function

$&%(') *

, LP-based (Answer Sets!)

Optimistic plans: Secure plans:
A1 A nA2

S1

...

S0 Sn
...
...

...

...

Goal

A1 A nA2

S1

...

S0 Sn

Goal

Goal

Goal

...

...

...

...

...

Optimal plans: plans with lowest cost

Admissible plans: plans which stay within fixed cost limit

– p.9/21

�

Complexity

plan length

+

in query ,- .0/1 2 3 4 + 5

67

fixed (=constant) arbitrary

general

89

/

�:<; /

= :<> -complete

9 ? 9 @A B

/

�:<; / NEXPTIME -complete

proper

89

/ co-

89

/

= :C; -complete

9 ? 9 @A B

/ co-

89
/ NEXPTIME -complete

Complexity Results for Optimistic Planning / Security Checking / Secure Planning in

D

(Propositional Case)

Planning with Action costs:
Computing optimal optimistic/secure plans is

E F :C; -complete/

E F :HG -complete.

Answer Set Programming (with weak constraints) can be used to solve some of these tasks!

– p.10/21

Answer SetProgramming (ASP)

ASP with weak constraints is capable of solving problems beyond NP!
(conformant planning for proper domains, general secure checking)

2

P

2

P

SAT, normal LP, HCF−LP UnSAT, ...

co−NPNP

= NP
NP

NP=

P

3
=P

co−NP

Solvers for

IJ

problems: Smodels, SAT-Solvers, . . .

Solvers for

K LNM problems: DLV, GnT, . . .

Solvers for
O LNP problems: DLV with weak constraints . . .

– p.11/21

Answer SetProgramming (ASP)

function-free, disjunctive Logic Programs, set of rules:

QSR TVU U U T QXW :- YR' U U U ' YCZ ' [\] YZ ^ R' U U U [\] YC_U

Semantics: Answer Sets Semantics for nonmonotonic logic programs
(Gelfond & Lifschitz, 1991), minimal “stable” models

Extension: weak constraints (Buccafurri et.al., 1999):

`a YR' U U U ' YHZ ' [\] YZ ^ R' U U U [\] YH_U bc d

Semantics: Optimal Answer Sets (with minimal violation costs)

– p.12/21

ProblemSolving in ASP:

“Guess and Check” Paradigm: a Simple Example:

ef g hjilk m n o ef g h ik p n o ef g h ik q n

:- rf sut h i nv w
Guess

:- t s p t h ik x nk ef g h ik y nk e f g h xk y nv w
Solution Check

Input: A graph represented by [\ zj{ $
_

*
and { zj| { $

_' _

*

.

Problem: Assign a color to all nodes such that

adjacent nodes always have different colors.

NP-complete problem!

ASP is well suited for solving search problems with a finite

search space! Efficient solvers (DLV, smodels, . . .) exist!
– p.13/21

Beyond NP: 2QBFs

} ~ ��� RU U U ��� Z ��� RU U U ��� _ �

� ~ �R ��� � � � �X���� ~ � ��� R �� � � � � �� W�� and

� � ��� � �u� � � R' U U U ' � Z ' � R' U U U ' � _ �
Compute an assignment to � R' U U U ' � Z such that

}
is true

... Guess

...

sat :- .
...

sat :- .

:- sat. ... :- sat.

:- sat. ... :- sat.

:- sat.

Check

Check part uses “saturation” technique!

– p.14/21

Beyond NP: 2QBFs

} ~ ��� RU U U ��� Z ��� RU U U ��� _ �

� ~ �R ��� � � � �X���� ~ � ��� R �� � � � � �� W�� and

� � ��� � �u� � � R' U U U ' � Z ' � R' U U U ' � _ �
Compute an assignment to � R' U U U ' � Z such that

}
is true

�� � � � ��� ... ��� � � ��� � �
Guess�� � � �� � ... �¢¡ � � �¢¡ �

sat :- 1 �V£ � ¤ � � � ¤ 1 �£ ¥u¦ .
...

sat :- 1 §£ � ¤ � � � ¤ 1 §£ ¥©¨ .�� :- sat. ... ��¡ :- sat.� �� :- sat. ... � �¢¡ :- sat.

:- ª « ¬ sat.

­¯®°®±®±®²®±®±®²®±®±®°®°³
®±®°®°®±®±®²®±®±®²®±®±´

Check

Check part uses “saturation” technique!

– p.14/21

Integrate “Guess” and “Check”

Problems:

Integrated

µ 6¶ programs often hard to find,

“Guess” and “Check” structure hard to see.

µ 6¶ encodings use unintuitive “saturation” techniques

Solution: Interleaved Computation!

Separate programs and

Compute solutions interleaved, i.e. compute all
solutions to and only accept those where

has no answer set.

Thesis provides automatic method for combining
these programs!

– p.15/21

Integrate “Guess” and “Check”

Problems:

Integrated

µ 6¶ programs often hard to find,

“Guess” and “Check” structure hard to see.

µ 6¶ encodings use unintuitive “saturation” techniques

Solution: Interleaved Computation!

Separate programs

·¹¸º »¼ ¼ and

· � ½ »� ¾

Compute solutions interleaved, i.e. compute all
solutions

¿

to

·À¸º »¼ ¼ and only accept those where·Á� ½ »� ¾ h ¿ n

has no answer set.

Thesis provides automatic method for combining
these programs!

– p.15/21

Integrate “Guess” and “Check”

Problems:

Integrated

µ 6¶ programs often hard to find,

“Guess” and “Check” structure hard to see.

µ 6¶ encodings use unintuitive “saturation” techniques

Solution: Interleaved Computation!

Separate programs

·¹¸º »¼ ¼ and

· � ½ »� ¾

Compute solutions interleaved, i.e. compute all
solutions

¿

to

·À¸º »¼ ¼ and only accept those where·Á� ½ »� ¾ h ¿ n

has no answer set.

Thesis provides automatic method for combining
these programs!

– p.15/21

ASPTranslation for Planning Problems

Based on this method, we define ASP Translations for:

optimistic planning

general/proper secure checking

proper secure planning

Action costs (optimal/admissible planning):

Extend these translations by weak constraints feature

– p.16/21

ASPTranslation for Planning Problems

Based on this method, we define ASP Translations for:

optimistic planning

general/proper secure checking

proper secure planning

Action costs (optimal/admissible planning):

Extend these translations by weak constraints feature

– p.16/21

Implementation – DLV

Control Flow
Data Flow

Plan Printer

Controller

Datalog Parser Plan Generator

�

Parser

DLV Core

DLV

Â

Core

Plan CheckerKnowledge
Background

�

input

Plan Generator: Computes Optimistic Plans

Plan Checker: Checks Optimistic Plans for Security

– p.17/21

Planning for Multi-Agent Monitoring

Event

Agent

r/wr/w

r/wr/w

r

Management

DB
Event

DB
Manager

Statistic
DB

Package
DB

Package
Agent

Notification
Agent

Event
Dispatcher

Agent

Agent
Zip

Idea:

Model collaborative Behavior in an MAS in

��

, and

derive valid messaging protocols from plans.

Further interesting applications:

Optimal Route planning with exceptional, time-dependent costs

Cheapest among the shortest plans, Shortest among the cheapest plans

Conformant planning examples from the literature (SQUARE, Bomb in Toilet)

– p.18/21

Planning for Multi-Agent Monitoring

Event

Agent

r/wr/w

r/wr/w

r

Management

DB
Event

DB
Manager

Statistic
DB

Package
DB

Package
Agent

Notification
Agent

Event
Dispatcher

Agent

Agent
Zip

Idea:

Model collaborative Behavior in an MAS in

��

, and

derive valid messaging protocols from plans.

Further interesting applications:

Optimal Route planning with exceptional, time-dependent costs

Cheapest among the shortest plans, Shortest among the cheapest plans

Conformant planning examples from the literature (SQUARE, Bomb in Toilet)

– p.18/21

Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
(encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!

– p.19/21

Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

�

Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
(encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!

– p.19/21

Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

�
Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
(encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!

– p.19/21

Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

�
Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
(

µ ÃÄ encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!

– p.19/21

Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

�
Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
(

µ ÃÄ encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!

– p.19/21

SelectedPublications

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.
A Logic Programming Approach to Knowledge-State Planning: Semantics and
Complexity. ACM Transactions on Computational Logic, 2003. To appear.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.
A Logic Programming Approach to Knowledge-State Planning, II: the DLV

Å

System.
Artificial Intelligence, 144(1–2):157–211, March 2003.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.
Answer Set Planning under Action Costs. Journal of Artificial Intelligence Research,
19:25–71, 2003.

J. Dix, T. Eiter, M. Fink, A. Polleres, and Y. Zhang. Monitoring agents using planning.
German Conference on Artificial Intelligence (KI2003), 2003.

T. Eiter and A. Polleres. Towards Automated Integration of Guess and Check
Programs in Answer Set Programming. Accepted for 7th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR-7).

– p.20/21

Semanticsof

�

– Transitions
Transition-based semantics: “legal” transitions

Æ&%ÈÇ ')' % R É
causedfl if Cond1after Cond2

A 1s s0

A . . . set of actions (executable)

Cond2 is evaluated in %ÈÇ

fl and Cond1 are evaluated in % R
Define new state % R by a non-monotonic logic program of rules

fl :- Cond1

Remark:
e.g., transitive closure easily expressed (LP-flavored semantics of

�

)

– p.21/21

	Overview -- Contributions
	Preliminaries:
	Planning and Action Languages
	$Kc $ Planning Domains and Problems
	Blocks world in $Kc $
	Blocks world: Kc Problem description
	Blocks World in Kc (cont'd)
	Semantics of $Kc $ -- Plans
	Kc Complexity
	Answer Set Programming (ASP)
	Answer Set Programming (ASP)
	Problem Solving in ASP:
	Beyond NP: 2QBFs
	Integrate ``Guess'' and ``Check''
	small ASP Translation for Planning Problems
	Implementation -- dlvk
	Planning for Multi-Agent Monitoring
	Conclusions & Outlook
	Selected Publications
	Semantics of $Kc $ -- Transitions

