
DISSERTATION:

Advancesin Answer SetPlanning
Dipl.-Ing. Axel Polleres

axel@kr.tuwien.ac.at

supervised by

O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Institut für Informationssysteme, Abteilung für Wissensbasierte Systeme

– p.1/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language
Syntax,Semantics

Complexity of Planning in

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

�

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Overview – Contrib utions

Preliminaries

Novel Declarative Planning Language

��
Syntax,Semantics

Complexity of Planning in

��

Problem Solving in Answer Set Programming (ASP) by
“Guess and Check”

Translation of Planning in
��

to ASP

Ready-to-Use Planning System DLV

�

Implementation

Experiments

Application: Planning for MAS-Monitoring

– p.2/21



Preliminaries:

Planning Problem: Find a sequence of actions to bring an agent from
an initial state to a goal state

Input: A set of actions (preconditions, effects);

Fluents (state variables) and their

initial values and goal values

Output: Sequence of action sets (discrete notion of time)

Classical Planning (complete knowledge, deterministic actions)

Actions: move(B,L)

Fluents: on(b,table), on(c,a), on(a,table),

occupied(a), ...

initial:

b
c
a

c
b
a

goal:

Non-Classical Planning(Conformant Plans, Conditional Plans, . . . )

b

d

d c
ainitial: goal:

c
a

?

d
b
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Planning and Action Languages

Existing formal Languages: STRIPS, ADL, PDDL, ,
�

, . . .

Here: Novel planning language

��

:

��

– Features:

A relative of action languages

�

(Gelfond & Lifschitz, 1993) and

�

(Giunchiglia & Lifschitz, 1998)

Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical) negation

Nondeterministic action effects

Action costs
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�

Planning Domainsand Problems

Background Knowledge

	

: A logic program

	

with a single model,

(answer set) defining type information and static knowledge.




Action Description

��

:

fluents:

� 
 % fluent declarations

actions:

� � % action type declarations

always:

��� % causation rules + exec. cond’s

initially:

��� % initial state constraints




Planning Domain:

� 	�� �� �




Planning Problem: additional goal

goal:

�� �� �

ground literal(s)

�

; plan length

� � �

.
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Blocks world in

�

initial:

b
c
a

c
b
a

goal:

Background knowledge

�

=

 

block(a). block(b). block(c).

location(table).

location(L) :- block(L).

!

(Logic Program which has a single model - set of “invariant” facts)
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Blocksworld:

�

Problemdescription
fluents: on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always: executable move(B,L) if not occupied(B), not occupied(L), B<>L.

caused on(B,L) after move(B,L).

caused on(B,L1) after move(B,L), on(B,L1), L<>L1.

caused occupied(B) if on(B1,B), block(B).

inertial on(B,L). % Explicit frame axioms!

noConcurrency. % Optionally, parallel actions!

initially: on(a,table). on(b,table). on(c,a).

goal: on(c,b),on(b,a),on(a,table)? (3)

Intuitively: Feasible plan is

initial:

b
c
a

c
b
a

goal:

move(c,table); move(b,a); move(c,b) COSTS: 3
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Blocks World in

�

(cont’d)

Incomplete Knowldege: b

d

d c
ainitial: goal:

c
a

?

d
b

initially: total on(d,L).

caused "on(d,c).
% State Axioms:

caused false if on(B,L), on(B,L1), L<>L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.
...

goal: on(a,c),on(c,d),on(d,b),on(b,table)? (4)

Feasible plans:
move(c,d); move(a,c); (no action); (no action) COSTS: 2

move(d,c); move(d,b); move(c,d); move(a,c) COSTS: 4
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Semanticsof

�

– Plans
Multi-valued transition function

# $&%(' ) *

, LP-based (Answer Sets!)

Optimistic plans: Secure plans:
A1 A nA2

S1

... ... ...

S0 Sn
...
...

...

...

Goal

A1 A nA2

S1

... ... ...

S0 Sn

Goal

Goal

Goal

...

...

...

...

...

Optimal plans: plans with lowest cost

Admissible plans: plans which stay within fixed cost limit
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�

Complexity

plan length

+

in query ,- .0/1 2 3 4 + 5

67

fixed (=constant) arbitrary

general

89

/

�:<; /

= :<> -complete

9 ? 9 @A B

/

�:<; / NEXPTIME -complete

proper

89

/ co-

89

/

= :C; -complete

9 ? 9 @A B

/ co-

89
/ NEXPTIME -complete

Complexity Results for Optimistic Planning / Security Checking / Secure Planning in

D

(Propositional Case)

Planning with Action costs:
Computing optimal optimistic/secure plans is

E F :C; -complete/

E F :HG -complete.

Answer Set Programming (with weak constraints) can be used to solve some of these tasks!
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Answer SetProgramming (ASP)

ASP with weak constraints is capable of solving problems beyond NP!
(conformant planning for proper domains, general secure checking)

2

P

2

P

SAT, normal LP, HCF−LP UnSAT, ...

co−NPNP

= NP
NP

NP=

P

3
=P

co−NP

Solvers for

IJ

problems: Smodels, SAT-Solvers, . . .

Solvers for

K LNM problems: DLV, GnT, . . .

Solvers for
O LNP problems: DLV with weak constraints . . .

– p.11/21



Answer SetProgramming (ASP)

function-free, disjunctive Logic Programs, set of rules:

QSR TVU U U T QXW :- YR' U U U ' YCZ ' [ \ ] YZ ^ R' U U U [ \ ] YC_U

Semantics: Answer Sets Semantics for nonmonotonic logic programs
(Gelfond & Lifschitz, 1991), minimal “stable” models

Extension: weak constraints (Buccafurri et.al., 1999):

`a YR' U U U ' YHZ ' [ \ ] YZ ^ R' U U U [ \ ] YH_U bc d

Semantics: Optimal Answer Sets (with minimal violation costs)

– p.12/21



ProblemSolving in ASP:

“Guess and Check” Paradigm: a Simple Example:

ef g hjilk m n o ef g h ik p n o ef g h ik q n

:- rf sut h i nv w
Guess

:- t s p t h ik x nk ef g h ik y nk e f g h xk y nv w
Solution Check

Input: A graph represented by [ \ zj{ $
_

*
and { zj| { $

_' _

*

.

Problem: Assign a color to all nodes such that

adjacent nodes always have different colors.

NP-complete problem!

ASP is well suited for solving search problems with a finite

search space! Efficient solvers (DLV, smodels, . . . ) exist!
– p.13/21



Beyond NP: 2QBFs

} ~ ��� RU U U ��� Z ��� RU U U ��� _ �

� ~ �R ��� � � � �X���� ~ � ��� R �� � � � � �� W�� and

� � ��� � �u� � � R' U U U ' � Z ' � R' U U U ' � _ �
Compute an assignment to � R' U U U ' � Z such that

}
is true

... Guess

...

sat :- .
...

sat :- .

:- sat. ... :- sat.

:- sat. ... :- sat.

:- sat.

Check

Check part uses “saturation” technique!
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}
is true

�� � � � ��� ... ��� � � ��� � �
Guess�� � � �� � ... �¢¡ � � �¢¡ �

sat :- 1 �V£ � ¤ � � � ¤ 1 �£ ¥u¦ .
...

sat :- 1 §£ � ¤ � � � ¤ 1 §£ ¥©¨ .�� :- sat. ... ��¡ :- sat.� �� :- sat. ... � �¢¡ :- sat.

:- ª « ¬ sat.

­¯®°®±®±®²®±®±®²®±®±®°®°³
®±®°®°®±®±®²®±®±®²®±®±´

Check

Check part uses “saturation” technique!
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Integrate “Guess” and “Check”

Problems:

Integrated

µ 6¶ programs often hard to find,

“Guess” and “Check” structure hard to see.

µ 6¶ encodings use unintuitive “saturation” techniques

Solution: Interleaved Computation!

Separate programs and

Compute solutions interleaved, i.e. compute all
solutions to and only accept those where

has no answer set.

Thesis provides automatic method for combining
these programs!

– p.15/21
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ASPTranslation for Planning Problems

Based on this method, we define ASP Translations for:

optimistic planning

general/proper secure checking

proper secure planning

Action costs (optimal/admissible planning):

Extend these translations by weak constraints feature

– p.16/21
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Implementation – DLV

Control Flow
Data Flow

Plan Printer

Controller

Datalog Parser Plan Generator

�

Parser

DLV Core

DLV

Â

Core

Plan CheckerKnowledge
Background

�

input

Plan Generator: Computes Optimistic Plans

Plan Checker: Checks Optimistic Plans for Security
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Planning for Multi-Agent Monitoring

Event

Agent

r/wr/w

r/wr/w

r

Management

DB
Event

DB
Manager

Statistic
DB

Package
DB

Package
Agent

Notification
Agent

Event
Dispatcher

Agent

Agent
Zip

Idea:

Model collaborative Behavior in an MAS in

��

, and

derive valid messaging protocols from plans.

Further interesting applications:

Optimal Route planning with exceptional, time-dependent costs

Cheapest among the shortest plans, Shortest among the cheapest plans

Conformant planning examples from the literature (SQUARE, Bomb in Toilet)
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Conclusions& Outlook

Expressive planning language based on Logic
Programming (Knowledge Representation!)

Efficient planning system based on Answer Set
Techniques is feasible: DLV

Encouraging Results (Experiments!)

Exploiting the full potential of ASP power
( encodings), problems beyond SAT Solvers!

Further Work: Reactive Planning!
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Semanticsof

�

– Transitions
Transition-based semantics: “legal” transitions

Æ&%ÈÇ ' )' % R É
causedfl if Cond1after Cond2

A 1s s0

A . . . set of actions (executable)

Cond2 is evaluated in %ÈÇ

fl and Cond1 are evaluated in % R
Define new state % R by a non-monotonic logic program of rules

fl :- Cond1

Remark:
e.g., transitive closure easily expressed (LP-flavored semantics of

�

)
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