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Overview

I The Semantic Web

I Where to add Rules in the “Layer Cake”?

I A lightweight approach: Logic Programs with Context and Scoped
Negation

I Contextually Bounded Semantics
I Contextually Closed Semantics
I Summary/Open Issues

I Other approaches . . . time allowed.

I SWRL – Rules on top of OWL
I DLP – Intersection of LP and DL
I dl-programs – a query interface between LP and OWL
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Motivation - Semantic Web

http://imdb.com http://badmovies.org

I The Semantic Web promises machine readable metadata annotations of
such sites allowing to combine and query their content, draw additional
inferences.

I E.g., imagine a “Semantic” search engine gathering metadata on movies
and ratings, using an agreed vocabulary, I want to ask queries, such as:
“Search for science fiction movies which are rated as bad?”

I I want to express taxonomies such as “Science-fiction movies are
movies.”

I Besides facts in RDF, I want to express more complex rules such as for
instance: “All movies listed on badmovies.org are rated bad.”
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The W3C’s Semantic Web “layer cake”
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The W3C’s Semantic Web “layer cake”

Can LP style rules really be layered ON TOP of OWL?

I. Horrocks , B. Parsia , P. Patel-Schneider , J. Hendler. Semantic Web Architecture:
Stack or Two Towers? PPSWR, 2005.
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The W3C’s Semantic Web “layer cake”

What is the common interoperability layer?

B. Grosof, I. Horrocks , R. Volz , S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. WWW, 2003.
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The W3C’s Semantic Web “layer cake”

Can we define a “safe” interface between LP and OWL?

T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits Combining Answer Set
Programming with Description Logics for the Semantic Web. KR, 2004.
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The W3C’s Semantic Web “layer cake”

What is the “right” way to go?
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RDF - A standard for metadata
Let’s start at the level where concerns are still (more or less) clear:

I RDF allows to define factual metadata in about resources in form of
triples

〈Subject, Predicate, Object〉
e.g. StarWars is directed by Goerge Lucas.

I Resources identified by URIs

I RDFS allows to define simple taxonomies on RDF vocabularies using
rdf:type, rdf:subClassOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF
keywords treated as normal resources, reification, etc.)

I The presented approach discuss rules on top of RDF(S) only.
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Metadata on the Web as RDF facts.

http://moviereviews.com/
triple(ex:m1,ex:rate,ex:bad).

http://polleres.net/myreviews
triple(ex:m2,ex:rate,ex:bad).

triple(ex:m2,rdf:type,movie).
http://imdb.com/
triple(ex:m1,rdf:type,ex:sciFiMovie).

triple(ex:m1,ex:title,"Plan 9 from Outer Space").

triple(ex:m1,ex:directedBy,"Ed Wood").

triple(ex:m2,rdf:type,ex:sciFiMovie).

triple(ex:m2,ex:title,"Matrix Revolutions").

triple(ex:m2,ex:directedBy,"Andy Wachowski").

triple(ex:m2,ex:directedBy,"Larry Wachowski").

triple(ex:m3,rfd:type,ex:sciFiMovie).

triple(ex:m3,ex:title,"Bride of the Monster").

triple(ex:m3,ex:directedBy,"Ed Wood").

triple(ex:sciFiMovie,rdf:subClassOf,ex:movie).

...

Figure: RDF triples for some movie information sites
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RDFS semantics
RDFS semantics can (to a large extent) be captured by LP style rules:

http://www.example.org/rdfs-semantics :

triple(P,rdf:type,rdf:Property) :- triple(S,P,O).

triple(S,rdf:type,rdfs:Resource) :- triple(S,P,O).

triple(O,rdf:type,rdfs:Resource) :- triple(S,P,O).

triple(S,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:domain,C).

triple(O,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:range,C).

triple(C,rdfs:subClassOf,rdfs:Resource) :- triple(C,rdf:type,rdfs:Class).

triple(C1,rdfs:subClassOf,C3) :- triple(C1,rdfs:subClassOf,C2),

triple(C2,rdfs:subClassOf,C3).

triple(S,rdf:type,C2) :- triple(S,rdf:type,C1),

triple(C1,rdfs:subClassOf,C2).

triple(C,rdf:type,rdfs:Class) :- triple(S,rdf:type,C).

triple(C,rdfs:subClassOf,C) :- triple(C,rdf:type,rdfs:Class).

triple(P1,rdfs:subPropertyOf,P3) :- triple(P1,rdfs:subPropertyOf,P2),

triple(P2,rdfs:subPropertyOf,P3).

triple(S,P2,O) :- triple(S,P1,O),

triple(P1,rdfs:subPropertyOf,P2).

triple(P,rdfs:subPropertyOf,P) :- triple(P,rdf:type,rdf:Property).

plus the respective axiomatic triples in RDF/RDFS, cf. Sections 3.1 and 4.1 of

http://www.w3.org/TR/rdf-mt/.
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A lightweight approach to add rules:

Adding normal logic programs on top of RDF(S)

I We want to add arbitrary LP style rules on top of RDF(S)

I We want to allow negation as failure (normal logic programs)

I We want to base our semantics on the stable model semantics
for logic programs

I But: There are some problems when allowing negation as
failure on the Web
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The stable model semantics for logic programs (1/2)

Syntax:
A normal logic programs P is a set of rules of the form:

h : −l1, . . . , ln.
I l1, . . . , ln are literals, i.e. atoms p(t1, . . . , tm) or negated atoms

not p(t1, . . . , tm), such that t1, . . . , tm are either constants or variables.

I h is an atom.

Semantics:
Herbrand models defined as usual:

I UH consists of the the set of all constants appearing in P

I BH is the set of all atoms constructible from predicate symbols in P and
constants in UH .

I Since there are no function symbols, BH is finite.

I A Herbrand interpretation I is a subset of BH .

I We denote by ground(P ) the set of all possible ground instantiations of
rules in P where variables are substituted with the constants in UH .

I A Herbrand interpretation I is called Herbrand model of P if all rules in
ground(P ) are satisfied wrt. I.

I Each positive (not-free) program P has a unique minimal Herbrand
model M .
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The stable model semantics for logic programs (2/2)

The stable models for programs with negation is defined via the
Gelfond-Lifschitz-reduct:
Let I be a Herbrand interpretation of P . Then the reduct P I denotes the set
of rules obtained from ground(P ) by

I removing all rules r such that not a occurs in the body of r for some
a ∈ I

I rmoving all literals not a from the remaining rules.

A Herbrand interpretation M is called stable model of a normal logic program
P iff M is the minimal Herbrand model of P M .

There are efficient solvers to compute stable models: dlv, smodels, cmodels,

assat, etc.
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Incomplete knowledge on the Web

Problems:

I Incompleteness: The knowledge of a search engine about the Web is
notoriously incomplete, i.e. it does not know about all available
Websites.

“Search for all movies by Ed Wood”

Cannot be answered, without e.g. local completeness assumptions.
Usually, this is not a problem as long as query results are good
enough (sound, at least).

I More severe problems with negation in rules and queries:

“Search for science fiction movies which are NOT rated as bad?”

problematic, since using normal negation as failure over a finite
subset of webpages is not only incomplete, but incorrect!

Solution: Enforce to make the scope for negation as failure always

explicit!
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Metadata on the Web as distributed rule sets

http://moviereviews.com/
rated(m1,bad).

rated(X,bad) :-

directedBy(X,"Ed Wood").

http://polleres.net/myreviews
rated(m2,bad). movie(m2).

rated(X,bad) :- movie(X),

not movie(X)@http://imdb.com.

http://badmovies.org/
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.
http://imdb.com/
sciFiMovie(m1). hasTitle(m1,"Plan 9 from Outer Space").

directedBy(m1,"Ed Wood").

sciFiMovie(m2). hasTitle(m2,"Matrix Revolutions").

directedBy(m2,"Andy Wachowski"). directedBy(m2,"Larry

Wachowski").

sciFiMovie(m3). hasTitle(m3,"Bride of the Monster").

directedBy(m3,"Ed Wood").

movie(X) :- sciFiMovie(X).

...

Figure: We use a more LP notation than before . . . and add rules
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Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:

I open (unscoped) literals a.
I scoped literals (not) a@u.
I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.

13

http://moviereviews.com
http://badmovies.org


Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:
I open (unscoped) literals a.

I scoped literals (not) a@u.
I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.

13

http://moviereviews.com
http://badmovies.org


Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:
I open (unscoped) literals a.
I scoped literals (not) a@u.

I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.

13

http://moviereviews.com
http://badmovies.org


Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:
I open (unscoped) literals a.
I scoped literals (not) a@u.
I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.

13

http://moviereviews.com
http://badmovies.org


Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:
I open (unscoped) literals a.
I scoped literals (not) a@u.
I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.

13

http://moviereviews.com
http://badmovies.org


Syntax: Logic Programs with scoped literals

Assumption: A program is a set of rules associated with a URI u, where
it is accessible:

h : −l1, . . . , ln.

I Body Literals:
I open (unscoped) literals a.
I scoped literals (not) a@u.
I negative literals (negation as failure) MUST be scoped!

I Head atoms are always unscoped (to be viewed in the
scope/context of the program (uri) where they appear), i.e. if h is
derived from p we would also expect h@p to be derivable.

Examples of open and scoped rules:

http://moviereviews.com :
rated(X,bad) :- directedBy(X,"Ed Wood").

http://badmovies.org :
movie(m1).

...

rated(X,bad) :- movie(X)@http://badmovies.org.
13

http://moviereviews.com
http://badmovies.org


Requirements for a reasonable semantics for such rules

Let CnS(P) denote the set of conequences from a set of programs
P wrt. semantics S

R1 Context-Monotonicity: When asking query q over (open
and scoped) literals to an agent which is aware of a set of
programs P (query context), I expect that I don’t need to
retract any inferences when asking another agent aware of
R ⊃ P, i.e.

P ⊆ R ⇒ CnS(P) ⊆ CnS(R)

R2 The chosen semantics should be closed under context
closure, i.e.

CnS(P) = CnS(Cl(P))

where Cl(P) is the set of all programs in P plus the ones
“linked” recursively via scoped literals.

We define two semantics based on the stable model semantics,
both fullfilling R1, one of them fullfilling R2.
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Contextually Bounded semantics: CnCB (1/2)

Intuitively, scoping negative literals alone is not enough, since
scoped literals can again depend on open rules, e.g.
interestingmovie(X) :- movie(X),

not rated(X,bad)@http://moviereviews.com.

depends on whether the agent evaluating this rule knows
http://imdb.com or not.

1st proposal to deal with this: Allow only contextually bounded
negation.

We call a (set of) rules contextually bounded if no
negative literal recursively depends on unscoped (open)
literals.

interestingmovie(X) :- movie(X),

not rated(X,bad)@http://badmovies.com.

Attention: This rule is NOT contextually bounded:
rated(X,bad) :- movie(X), not movie(X)@http://imdb.com.

15
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Attention: This rule is NOT contextually bounded:
rated(X,bad) :- movie(X), not movie(X)@http://imdb.com.
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Contextually Bounded semantics: CnCB (2/2)

Semantics is based on usual stable model semantics, plus “linking”
open and closed literals by the following rewriting pCB for each
rule in program p:

h :- l1, ..., ln.

⇒
h@p :- l1, ..., ln.
h :- h@p.

Let PCB =
⋃

p∈Cl(P) pCB, then

CnCB(P) =
⋂
M(PCB)

whereM(p) is defined as the set of all stable models of program p
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Contextually Bounded semantics: Implications

R1 holds, by contextual boundedness (easy proof in [Polleres, et
al. 2006]).

R2 holds trivially (PCB is defined via the closure of P).

Problem:

I Contextual boundedness is a prerequisite:
p:

r:

a :- not b@p.

c.

b :- c.

I Contextual boundedness is hardly maintainable in an open
context, especially when contexts change (adding open rule):
p: r:
a

.:- c.

b :- not a@p.
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Contextually Closed semantics CnCC (1/2)

Alternative approach: Intuitively “close off”, all open rules if
referenced via a scoped literal.
We define an alternative rewriting pCC for each rule in program p:

h :- l1, ..., ln.

⇒
h@p :- l′1, ..., l′n.

where l′i = li for scoped literals and l′i = li@p otherwise.
Let PCC =

⋃
p∈P ∪

⋃
p∈Cl(P) pCC , then

CnCC(P) =
⋂
M(PCC)

whereM(p) is defined as the set of all stable models of program p
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Contextually Closed semantics CnCC (2/2)

Intuitively, contextually closed semantics is more cautious or
“local”:

I CnCC(P) ⊆ CnCB(P) (proof in [Polleres, et al. 2006]).

I It does not ”traverse” closure concerning open literals, i.e. R2
does not hold:
p: r:
a :- b@r.

b :-

c.

c.

Here, ∈ CnCB(p), but 6∈ CnCC(p)

which one might
consider more intuitive, i.e. cross-effects of open literals only
within the query context.
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Summary of this approach

I Can be used on top of RDF (modulo blank nodes)

I Clear definition of “scoped” negation

I First attempt to

I issue context-monotonicity
I make dinstinction between open and closed rules

I The two solution proposed are simple/cautious on purpose, trying
to start discussion about the “right” semantics of scoped negation
for the Semantic Web.
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Related works

I FLORA-2 (Kifer): an engine for F-Logic programs, allows modules,
i.e. contexts, open literals/rules supported by allowing variables in
place of modules, e.g.

a : −b@X.

No requirement for context-monotonicity though, well-founded
semantics

I TRIPLE (Decker, et al.) allows parametrized contexts, union,
intersection, set difference of contexts, also parameters allowed.
Negation unsupported in current implementation, AFAIK.

I C-OWL extension of OWL by contexts and bridge rules, local model
semantics, i.e. local inconsistencies do not spread over to the whole.

Sideremark: The approach is orthogonal to LCWA (Local closed world

assumption) approaches allowing local completeness statements.
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Issues/Future work

I Investigate a Local Model Semantics

I Exact relation with SPARQL, RIF

I Complexity, Prototype implementation (DLV, YARS)

I Investigate different semantics (well-founded vs. stable)

I Classical Negation, integration with the Ontology Layer
(OWL)
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Time allowed... How to integrate OWL with Rules?

OWL (Web Ontology Language) adds more expressivity on top of RDF,
allows to define taxonomies based on intersection, complement,
cardinality restrictions, etc.

Expressivity in principle based on the description logic SHOIN (D).
(OWL DL, this is not not completely true for OWL Full)

24



Interoperability on the common (Horn) intersection only

DLP:
The Horn fragment of SHOIN(D) can be understood as a rule set. So,
you can understand a small part of OWL as rules.
e.g. father(X) ← parent(X,Y),person(Y),male(X).
⇔ Father v ∃Parent−1.Human uMale

BUT: cannot cover much either on the rules part, nor on the DL part.

Only a basis for extensions in either direction.
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Rules on top of OWL – SWRL

SWRL:
Add Horn rules to OWL syntax, allows you to express e.g.
uncle(X,Y) ← male(X), sibling(X,Z),parent(Z,Y).

But, also:
∃X parent(X,Y) ← male(Z).

(from ∃Parent.Human v male)

I On the one hand naive combination of Horn + DL destroys decidability of
either.

I On the other hand SWRL does not even allow arbitrary HORN but only
binary/unary predicates.

I Issues like open vs. closed rules, negation as failure untouched.
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Interface between LP and DL – dl-programs

T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits Combining Answer Set
Programming with Description Logics for the Semantic Web. KR, 2004.

Define an extension of LP under the stable model semantics by so-called dl-atoms in
the body, which allow to query a DL Knowledge base, but also interchange facts in the
other direction. Authors define minimal Herbrand models and stable models for
dl-programs.

pro Decidability remains.

con DL KB and LP program talk about different things, exchange only
via “import/export”.

Generalization of this technique available, HEX-programs.
Extension to scoped literals? Not straightforward.
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Thank you for your attention!
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