
A motivating introduction to

Semantic Web and
Semantic Web Services

Axel Polleres

Universidad Rey Juan Carlos, Madrid

axel@polleres.net

May 25, 2006

1



Overview

I The Semantic Web

I Idea
I “Layer cake”
I RDF and OWL

I Web Services

I Components of SOA
I SOAP, WSDL, UDDI

I Towards Semantic Web Services

I Aspects
I Usage Tasks

I Approaches

I OWL-S
I WSMO
I SWSF
I WSDL-S

2



The Semantic Web

http://imdb.com http://badmovies.org

I The Semantic Web promises machine-readable metadata annotations of
websites allowing to combine and query their content, draw additional
inferences, just like you’d deal with a huge database.

I E.g., imagine a “Semantic” search engine gathering metadata on movies
and ratings, using an agreed vocabulary, I want to ask database like
queries, such as: “Search for science fiction movies which are rated as
bad?”

I I want to express taxonomies such as “Science-fiction movies are
movies.”

I Besides metadata facts, I want to express more complex rules such as for
instance: “All movies listed on badmovies.org are rated bad.”

3



The Semantic Web

http://imdb.com http://badmovies.org

I The Semantic Web promises machine-readable metadata annotations of
websites allowing to combine and query their content, draw additional
inferences, just like you’d deal with a huge database.

I E.g., imagine a “Semantic” search engine gathering metadata on movies
and ratings, using an agreed vocabulary, I want to ask database like
queries, such as: “Search for science fiction movies which are rated as
bad?”

I I want to express taxonomies such as “Science-fiction movies are
movies.”

I Besides metadata facts, I want to express more complex rules such as for
instance: “All movies listed on badmovies.org are rated bad.”

3



The Semantic Web

http://imdb.com http://badmovies.org

I The Semantic Web promises machine-readable metadata annotations of
websites allowing to combine and query their content, draw additional
inferences, just like you’d deal with a huge database.

I E.g., imagine a “Semantic” search engine gathering metadata on movies
and ratings, using an agreed vocabulary, I want to ask database like
queries, such as: “Search for science fiction movies which are rated as
bad?”

I I want to express taxonomies such as “Science-fiction movies are
movies.”

I Besides metadata facts, I want to express more complex rules such as for
instance: “All movies listed on badmovies.org are rated bad.”

3



The Semantic Web

http://imdb.com http://badmovies.org

I The Semantic Web promises machine-readable metadata annotations of
websites allowing to combine and query their content, draw additional
inferences, just like you’d deal with a huge database.

I E.g., imagine a “Semantic” search engine gathering metadata on movies
and ratings, using an agreed vocabulary, I want to ask database like
queries, such as: “Search for science fiction movies which are rated as
bad?”

I I want to express taxonomies such as “Science-fiction movies are
movies.”

I Besides metadata facts, I want to express more complex rules such as for
instance: “All movies listed on badmovies.org are rated bad.”

3



The W3C’s Semantic Web “layer cake”

I XML is the basis

I RDF is a graph-based datamodel for describing meta-data

I OWL and Rules shall provide possiblity to infer addidional knowledge

Remark: Semantic Web is not only about combining Web meta-data, but

about data integration in general (not a new issue)!
4



RDF in a nutshell...
The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.
I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic!

(Don’t panic!)

5



RDF in a nutshell...

The RDF is the data model for the Semantic Web metadata.
RDF describes a labeled graph of resources (nodes) linked to other resources or literals
by predicates.

I usually represented in form of triples 〈Subject, Predicate, Object〉 e.g.

http://www.polleres.net/index.html dc:creator http://www.polleres.net/foaf.rdf#me.

http://www.polleres.net/foaf.rdf#me foaf:name "Axel Polleres"

<rdf:Description rdf:about="http://www.polleres.net/index.html">

<dc:creator>

<rdf:Description rdf:about="http://www.polleres.net/foaf.rdf#me">

<foaf:Name>Axel Polleres</foaf:Name>

</rdf:Description>

</dc:creator>

</rdf:Description>

I Resources identified by URIs, not necessarily only Web pages.

I RDFS allows to define simple taxonomies on RDF vocabularies using rdf:type,

rdf:subClassOf,rdfs:subPropertyOf

I Some subtleties in RDF semantics (blank nodes, XML literals, RDF keywords
treated as normal resources, reification, etc.)

I RDFS can be seen as logic! (Don’t panic!)

5



OWL offers more expressivity than RDF/S

Web Ontology Language.

I Ontologies allow to to formally define shared
conceptualizations, on top of the RDF/RDFS data model.

I OWL is basically a variant of description logic SHOIN (D),
enough that we know that it allows to decribe classes of
resourses, and their properties as well as some restrictions on
their use.

I Simply: Additional rules, descriptions of a data model in a
formal language, related: UML, EER, etc.

I What makes ontologgies different from datamodels is :
Consensual!

I OWL/RDF are only a languages for this, i.e. Ontologies and
the semantic Web only work if people share ontologies.

6



OWL offers more expressivity than RDF/S

Web Ontology Language.

I Ontologies allow to to formally define shared
conceptualizations, on top of the RDF/RDFS data model.

I OWL is basically a variant of description logic SHOIN (D),
enough that we know that it allows to decribe classes of
resourses, and their properties as well as some restrictions on
their use.

I Simply: Additional rules, descriptions of a data model in a
formal language, related: UML, EER, etc.

I What makes ontologgies different from datamodels is :
Consensual!

I OWL/RDF are only a languages for this, i.e. Ontologies and
the semantic Web only work if people share ontologies.

6



OWL offers more expressivity than RDF/S

Web Ontology Language.

I Ontologies allow to to formally define shared
conceptualizations, on top of the RDF/RDFS data model.

I OWL is basically a variant of description logic SHOIN (D),
enough that we know that it allows to decribe classes of
resourses, and their properties as well as some restrictions on
their use.

I Simply: Additional rules, descriptions of a data model in a
formal language, related: UML, EER, etc.

I What makes ontologgies different from datamodels is :
Consensual!

I OWL/RDF are only a languages for this, i.e. Ontologies and
the semantic Web only work if people share ontologies.

6



OWL offers more expressivity than RDF/S

Web Ontology Language.

I Ontologies allow to to formally define shared
conceptualizations, on top of the RDF/RDFS data model.

I OWL is basically a variant of description logic SHOIN (D),
enough that we know that it allows to decribe classes of
resourses, and their properties as well as some restrictions on
their use.

I Simply: Additional rules, descriptions of a data model in a
formal language, related: UML, EER, etc.

I What makes ontologgies different from datamodels is :
Consensual!

I OWL/RDF are only a languages for this, i.e. Ontologies and
the semantic Web only work if people share ontologies.

6



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



Semantic Web – What for?

I Well, why is XML/XML Schema not enough? If every body
uses the same XML schema, then all is fine, right?

I But: RDF “flat” data model, is easier to merge/combine than
XML trees.

I OWL offers more expressivity, enables automatic inference

I Still, only at the start so far, but first RDF/OWL vocabularies
gain momentum: e.g. RSS, FOAF, Dublin Core, alsoe iCAL
has an RDF format which is widely used, etc.

I Take home message: OWL/RDF make it easy to
I combine these vocabularies and develop intelligent methods on

top.
I axiomatize meaning = semantics!

I Helps us to automatize aggregation and integration of data
(not only) on the Web!

I Again: automatd reasoning and a bit of logic as the
foundations!

7



From static to dynamic

http://www.renfe.es http://amazon.com

Current Web pages offer not only static data but also dynamic
services, e.g. bying books, booking hotels, bying train tickets, etc.

I Question: Can we automatize service usage in a similar way as
aggregation/querying of static data?

I Just like data integration, making applications and software
components interoperable/combinable is not a new issue in
the IT landscape... keyword: “Middleware”!

8



From static to dynamic

http://www.renfe.es http://amazon.com

Current Web pages offer not only static data but also dynamic
services, e.g. bying books, booking hotels, bying train tickets, etc.

I Question: Can we automatize service usage in a similar way as
aggregation/querying of static data?

I Just like data integration, making applications and software
components interoperable/combinable is not a new issue in
the IT landscape...

keyword: “Middleware”!

8



From static to dynamic

http://www.renfe.es http://amazon.com

Current Web pages offer not only static data but also dynamic
services, e.g. bying books, booking hotels, bying train tickets, etc.

I Question: Can we automatize service usage in a similar way as
aggregation/querying of static data?

I Just like data integration, making applications and software
components interoperable/combinable is not a new issue in
the IT landscape... keyword: “Middleware”!

8



Web Services (1/2)

I Current “buzzwords” on middleware are: Service-Oriented
Architectures (SOA), Web Services.

I Web services denote a set of standards to enable distributed
application development based on Web standards.

I Four main “ingredients”:
I An agreed transport protocol (SOAP over HTTP)
I An agreed message description format (XML Schema, SOAP)
I A language for interface description (WSDL)
I A registry for publication and discovery of available services

(UDDI)

I What is “webbish” about Web services?
I Using Web protocols such as HTTP, allow easy integration

with exiting Web server technologies as “application servers”
I Strictly relying on XML as message exchange format

9



Web Services (1/2)

I Current “buzzwords” on middleware are: Service-Oriented
Architectures (SOA), Web Services.

I Web services denote a set of standards to enable distributed
application development based on Web standards.

I Four main “ingredients”:
I An agreed transport protocol (SOAP over HTTP)
I An agreed message description format (XML Schema, SOAP)
I A language for interface description (WSDL)
I A registry for publication and discovery of available services

(UDDI)

I What is “webbish” about Web services?
I Using Web protocols such as HTTP, allow easy integration

with exiting Web server technologies as “application servers”
I Strictly relying on XML as message exchange format

9



Web Services (1/2)

I Current “buzzwords” on middleware are: Service-Oriented
Architectures (SOA), Web Services.

I Web services denote a set of standards to enable distributed
application development based on Web standards.

I Four main “ingredients”:
I An agreed transport protocol (SOAP over HTTP)
I An agreed message description format (XML Schema, SOAP)
I A language for interface description (WSDL)
I A registry for publication and discovery of available services

(UDDI)

I What is “webbish” about Web services?
I Using Web protocols such as HTTP, allow easy integration

with exiting Web server technologies as “application servers”
I Strictly relying on XML as message exchange format

9



Web Services (2/2)

What makes Web services different from its predecessors (CORBA,
RMI, DCOM,etc.)?

I light-weight

I modular

I extensible (e.g. by Semantic Web technology), rely on open
standards

I Standardization bodies support it: W3C, OASIS (Organization
for the Advancement of Structured Information Standards)

I “Global Players” (IBM, Microsoft, BEA, etc.) collaborate!

⇒ High potential!

10



Web Services (2/2)

What makes Web services different from its predecessors (CORBA,
RMI, DCOM,etc.)?

I light-weight

I modular

I extensible (e.g. by Semantic Web technology), rely on open
standards

I Standardization bodies support it: W3C, OASIS (Organization
for the Advancement of Structured Information Standards)

I “Global Players” (IBM, Microsoft, BEA, etc.) collaborate!

⇒ High potential!

10



Web Services (2/2)

What makes Web services different from its predecessors (CORBA,
RMI, DCOM,etc.)?

I light-weight

I modular

I extensible (e.g. by Semantic Web technology), rely on open
standards

I Standardization bodies support it: W3C, OASIS (Organization
for the Advancement of Structured Information Standards)

I “Global Players” (IBM, Microsoft, BEA, etc.) collaborate!

⇒ High potential!

10



Web Services (2/2)

What makes Web services different from its predecessors (CORBA,
RMI, DCOM,etc.)?

I light-weight

I modular

I extensible (e.g. by Semantic Web technology), rely on open
standards

I Standardization bodies support it: W3C, OASIS (Organization
for the Advancement of Structured Information Standards)

I “Global Players” (IBM, Microsoft, BEA, etc.) collaborate!

⇒ High potential!

10



Web Services (2/2)

What makes Web services different from its predecessors (CORBA,
RMI, DCOM,etc.)?

I light-weight

I modular

I extensible (e.g. by Semantic Web technology), rely on open
standards

I Standardization bodies support it: W3C, OASIS (Organization
for the Advancement of Structured Information Standards)

I “Global Players” (IBM, Microsoft, BEA, etc.) collaborate!

⇒ High potential!

10



Web Services - SOAP

I Messaging framework for peers communicating XML
messages.

I packs an XML message in a so-called SOAP “envelope” which
can contain additional fault handling and routing information,
etc.

I Most common protocol binding is on top of HTTP, but also
other possible.

11



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (1/2)

I Define message types by XML Schema

I Define messages and operations

I Group several operations in “ports”

I Define binding protocol (e.g. SOAP over HTTP, HTTP/GET, etc.)

I Define the service endpoint address where the service can be
invoked.

12



Web Services - WSDL (2/2)
If you wanna play around, see e.g.: http://www.xmethods.net/
[...]

<wsdl:types>

[...]

<s:element name="GetWeather">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="CityName" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="CountryName" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

[...]

</wsdl:types>

<wsdl:message name="GetWeatherIn">

<wsdl:part name="parameters" element="tns:GetWeather" />

</wsdl:message>

[...]

<wsdl:portType name="GlobalWeather">

<wsdl:operation name="GetWeather">

<wsdl:input message="tns:GetWeatherSoapIn" />

<wsdl:output message="tns:GetWeatherSoapOut" />

</wsdl:operation>

[...]

</wsdl:portType>

<wsdl:binding name="GlobalWeatherSoap" type="tns:GlobalWeather">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

<wsdl:operation name="GetWeather">

<soap:operation soapAction="http://www.webservicex.NET/GetWeather" style="document" />

<wsdl:input><soap:body use="literal" /></wsdl:input>

<wsdl:output><soap:body use="literal" /></wsdl:output>

</wsdl:operation>

[..]

</wsdl:binding>

<wsdl:service name="GlobalWeather">

<wsdl:port name="GlobalWeatherSoap" binding="tns:GlobalWeatherSoap">

<soap:address location="http://www.webservicex.net/globalweather.asmx" />

</wsdl:port>

[...]

</wsdl:service>

13



Web Services - UDDI

UDDI is

I an API for publishing and searching Business partners and service
providers.

I a data model for service and business entities

I allows to link to service classifications (e.g. UNSPC) and technical
information (e.g. provided Web services)

I Howewer: general classifications or keywords in natural language
description are insufficient for automatic discovery

Summary: WSDL, SOAP, UDDI operate on a largely “syntactic”
level. . . not aligned with Semantic Web standards OWL/RDF, etc.

Would make sense to use the similar metadata format, for annotating

services, WSDL operations, input/output messages, etc. to describe their

meaning.

14



Web Services - UDDI

UDDI is

I an API for publishing and searching Business partners and service
providers.

I a data model for service and business entities

I allows to link to service classifications (e.g. UNSPC) and technical
information (e.g. provided Web services)

I Howewer: general classifications or keywords in natural language
description are insufficient for automatic discovery

Summary: WSDL, SOAP, UDDI operate on a largely “syntactic”
level. . . not aligned with Semantic Web standards OWL/RDF, etc.

Would make sense to use the similar metadata format, for annotating

services, WSDL operations, input/output messages, etc. to describe their

meaning.

14



Web Services - UDDI

UDDI is

I an API for publishing and searching Business partners and service
providers.

I a data model for service and business entities

I allows to link to service classifications (e.g. UNSPC) and technical
information (e.g. provided Web services)

I Howewer: general classifications or keywords in natural language
description are insufficient for automatic discovery

Summary: WSDL, SOAP, UDDI operate on a largely “syntactic”
level. . . not aligned with Semantic Web standards OWL/RDF, etc.

Would make sense to use the similar metadata format, for annotating

services, WSDL operations, input/output messages, etc. to describe their

meaning.

14



Web Services - UDDI

UDDI is

I an API for publishing and searching Business partners and service
providers.

I a data model for service and business entities

I allows to link to service classifications (e.g. UNSPC) and technical
information (e.g. provided Web services)

I Howewer: general classifications or keywords in natural language
description are insufficient for automatic discovery

Summary: WSDL, SOAP, UDDI operate on a largely “syntactic”
level. . . not aligned with Semantic Web standards OWL/RDF, etc.

Would make sense to use the similar metadata format, for annotating

services, WSDL operations, input/output messages, etc. to describe their

meaning.

14



What’s missing with Web Services?

By combination of Web services with Semantic Web technologies, we hope to achieve
a higher degree of automatization of discovery, composition, invcation, etc.

15



Aim

I Semantically enhanced repositories

I Tools and platforms that semantically enrich current Web
service descriptions and facilitate:

I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task

I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these

I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal

I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)

I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions

I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process

I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects

I Replacement: Facilitate substitution of services by equivalent ones

16



Aim

I Semantically enhanced repositories
I Tools and platforms that semantically enrich current Web

service descriptions and facilitate:
I Discovery: Locate different services suitable for a given task
I Selection: Choose the most appropriate services among these
I Composition: Combine services to achieve a goal
I Mediation: Solve mismatches (data, protocol, process)
I Execution: Invoke services following programmatic conventions
I Monitoring: Control the execution process
I Compensation: Transactions, undo/mitigate unwanted effects
I Replacement: Facilitate substitution of services by equivalent ones

16



Representational Aspects of Semantic service description

Should describe information necessary to enable discovery, composition,
execution, etc.

1. General service classifications using taxonimies

2. pre- and postconditions, functional aspects (What does the service
provide under which conditions?)

3. behavior/protocol description of the service (How to interact with
the service in order to achieve a certain functionality?)

4. non-functional aspects (QoS, cost, availability, etc.)

Approaches:

I OWL-S

I WSMO

I SWSF

I WSDL-S

17



Representational Aspects of Semantic service description

Should describe information necessary to enable discovery, composition,
execution, etc.

1. General service classifications using taxonimies

2. pre- and postconditions, functional aspects (What does the service
provide under which conditions?)

3. behavior/protocol description of the service (How to interact with
the service in order to achieve a certain functionality?)

4. non-functional aspects (QoS, cost, availability, etc.)

Approaches:

I OWL-S

I WSMO

I SWSF

I WSDL-S

17



OWL-S

http://www.w3.org/Submission/OWL-S/

I OWL-S is an OWL ontology to describe Web services, i.e. a metadata
vocabulary for services

I Main components of a service described in three sub-ontologies:

18

http://www.w3.org/Submission/OWL-S/


OWL-S Service Profile

Two main uses:

I Advertisements of Web Services capabilities (non-functional properties, QoS,
Description, classification, etc.)

I Request of Web services with a given set of capabilities

Classes/Properties:

Preconditions Set of conditions that should hold prior to service invocation

Inputs Set of necessary inputs that the requester should provide to invoke
the service

Outputs Results that the requester should expect after interaction with the
service provider is completed

Effects Set of statements that should hold true if the service is invoked
successfully.

Service type What kind of service is provided (eg selling vs distribution)

Product Product associated with the service (eg travel vs books vs auto parts)

Logics: outside OWL! Reference to Preconditions/Effects can refer to KIF, DRS,

SWRL

19



OWL-S Service Profile

Two main uses:

I Advertisements of Web Services capabilities (non-functional properties, QoS,
Description, classification, etc.)

I Request of Web services with a given set of capabilities

Classes/Properties:

Preconditions Set of conditions that should hold prior to service invocation

Inputs Set of necessary inputs that the requester should provide to invoke
the service

Outputs Results that the requester should expect after interaction with the
service provider is completed

Effects Set of statements that should hold true if the service is invoked
successfully.

Service type What kind of service is provided (eg selling vs distribution)

Product Product associated with the service (eg travel vs books vs auto parts)

Logics: outside OWL! Reference to Preconditions/Effects can refer to KIF, DRS,

SWRL

19



OWL-S Service Profile

Two main uses:

I Advertisements of Web Services capabilities (non-functional properties, QoS,
Description, classification, etc.)

I Request of Web services with a given set of capabilities

Classes/Properties:

Preconditions Set of conditions that should hold prior to service invocation

Inputs Set of necessary inputs that the requester should provide to invoke
the service

Outputs Results that the requester should expect after interaction with the
service provider is completed

Effects Set of statements that should hold true if the service is invoked
successfully.

Service type What kind of service is provided (eg selling vs distribution)

Product Product associated with the service (eg travel vs books vs auto parts)

Logics: outside OWL! Reference to Preconditions/Effects can refer to KIF, DRS,

SWRL

19



OWL-S Service model
Main uses:

I Define Process Model: Describes how a service works. Internal processes of the
service Specifies service, interaction protocol

I Specify abstract messages (can be inherited or refined from profile): ontological
type of information transmitted

I Facilitate Web service invocation, Composition of Web services Monitoring of
interaction

Classes/Properties:

I Each process model is built from atomic and composite prosecces

I Atomic processes:

Inputs the inputs that the process requires
Preconditions the conditions that are required for the process to run correctly

Outputs the information that results from (and is returned from) the
execution of the process

Results a process may have different outcomes depending on some
condition. Result consists of: Condition, Constraints, real
world Effects.

I Composite processes: OWL-S defines a simple treelike “workflow language” for
defining processes consisting of sequence, loop, switch, parallel execution, etc.
(control flow) and dataflow etc.

Problem: OWL (DL) doesn’t capture semantcis of workflow, conditions,etc.

20



OWL-S Service model
Main uses:

I Define Process Model: Describes how a service works. Internal processes of the
service Specifies service, interaction protocol

I Specify abstract messages (can be inherited or refined from profile): ontological
type of information transmitted

I Facilitate Web service invocation, Composition of Web services Monitoring of
interaction

Classes/Properties:

I Each process model is built from atomic and composite prosecces

I Atomic processes:

Inputs the inputs that the process requires
Preconditions the conditions that are required for the process to run correctly

Outputs the information that results from (and is returned from) the
execution of the process

Results a process may have different outcomes depending on some
condition. Result consists of: Condition, Constraints, real
world Effects.

I Composite processes: OWL-S defines a simple treelike “workflow language” for
defining processes consisting of sequence, loop, switch, parallel execution, etc.
(control flow) and dataflow etc.

Problem: OWL (DL) doesn’t capture semantcis of workflow, conditions,etc.

20



OWL-S Service model
Main uses:

I Define Process Model: Describes how a service works. Internal processes of the
service Specifies service, interaction protocol

I Specify abstract messages (can be inherited or refined from profile): ontological
type of information transmitted

I Facilitate Web service invocation, Composition of Web services Monitoring of
interaction

Classes/Properties:

I Each process model is built from atomic and composite prosecces

I Atomic processes:

Inputs the inputs that the process requires
Preconditions the conditions that are required for the process to run correctly

Outputs the information that results from (and is returned from) the
execution of the process

Results a process may have different outcomes depending on some
condition. Result consists of: Condition, Constraints, real
world Effects.

I Composite processes: OWL-S defines a simple treelike “workflow language” for
defining processes consisting of sequence, loop, switch, parallel execution, etc.
(control flow) and dataflow etc.

Problem: OWL (DL) doesn’t capture semantcis of workflow, conditions,etc.

20



OWL-S Grounding

Shall close the GAP to “traditional” Web Services world, allow linking to arbitrary
WSDL descriptions.

Possible problem: Simple mapping would still allow syntactic differences.

Solution: Last version of OWL-S allows to e.g. link to XSLT to link between

ontological representation and XSD defined messages in WSDL.

21



WSMO
http://www.w3.org/Submission/WSMO/

European Effort, concept based in PSMs, UMPL, etc. More a framework for SWS
annotation than an ontology
Tries to solve some of the OWL-S problems:

I WSMO is not an ontoloy in OWL, WSMO defines an own ontology language.

I Decouple provider and requester view.

I Decouple Interface from Implementation: distinguish between internal process
and externally observable behavior.

I make mediation a first-class object

Still, many similarities with the OWL-S model.

22

http://www.w3.org/Submission/WSMO/


WSMO top level concepts

23



WSMO ontologies

I Define terminology (classes, attributes, axioms on terminology) used by a web
service.

I Language: WSML

I Ontology language in WSML closer to LP than OWL.
I A more expressive language for expressing conditions, axioms,

than OWL.
I WSML (under development) is not only an ontology language

but shall comprise a language for expressing all of WSMO.

Properties:

I Imported Ontologies: import existing ontologies where no heterogeneities arise

I Used mediators: OO Mediators (ontology import with terminology mismatch
handling)

I “Standard” Ontology Notions: Concepts, Attributes, Relations, Functions,
Instances, Axioms

24



WSMO services/goals

Define the provided/requested:

I capability

I interfaces

Capability: comarable to OWL-S profile

Imported Ontologies

Used mediators OOMediators, WWMediators, WGMediators.

Pre-conditions What a web service expects in order to be able to provide its service.
They define conditions over the input.

Assumptions Conditions on the state of the world that has to hold before the Web
Service can be executed and work correctly, but not necessarily
checked/checkable.

Post-conditions describe the result of the Web Service in relation to the input, and
conditions on it.

Effects Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

Interfaces: WSMO distinguishes choreography and orchestration interfaces

25



WSMO services/goals

Define the provided/requested:

I capability

I interfaces

Capability: comarable to OWL-S profile

Imported Ontologies

Used mediators OOMediators, WWMediators, WGMediators.

Pre-conditions What a web service expects in order to be able to provide its service.
They define conditions over the input.

Assumptions Conditions on the state of the world that has to hold before the Web
Service can be executed and work correctly, but not necessarily
checked/checkable.

Post-conditions describe the result of the Web Service in relation to the input, and
conditions on it.

Effects Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

Interfaces: WSMO distinguishes choreography and orchestration interfaces

25



WSMO services/goals

Define the provided/requested:

I capability

I interfaces

Capability: comarable to OWL-S profile

Imported Ontologies

Used mediators OOMediators, WWMediators, WGMediators.

Pre-conditions What a web service expects in order to be able to provide its service.
They define conditions over the input.

Assumptions Conditions on the state of the world that has to hold before the Web
Service can be executed and work correctly, but not necessarily
checked/checkable.

Post-conditions describe the result of the Web Service in relation to the input, and
conditions on it.

Effects Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

Interfaces: WSMO distinguishes choreography and orchestration interfaces

25



WSMO service/goal interfaces:

No workflow language but an automaton (abstract state machine) shall define the
control and data flow. Final syntax still under discussion.

“Grounding” idea similar to OWL-S: input/output messages references to WSDL
message-operation pair

26



WSMO service/goal interfaces:

No workflow language but an automaton (abstract state machine) shall define the
control and data flow. Final syntax still under discussion.

A simple example.

I Choreography interface: externally observable behavior of the service

I Orchestration interface: which other services will be called by this service in
order to fullfill its capability.

26



WSMO Services

Requester view, dual to Web service annotations:

I provide/guarantee non-functional properties

I import Ontologies

I use Mediators

I provide a Capability

I provide an Interface

27



WSMO Goals

Requester view, dual to Web service annotations:

I request non-functional properties

I import Ontologies

I use Mediators

I request a Capability

I request an Interface

28



WSMO Mediators (1/2):

Resolve mismatches in service interaction/between service annotations. Different
levels of Heterogeneity:
(1) Data Level: mediate heterogeneous Data Sources
(2) Protocol/Process Level: mediate heterogeneous Communication Patterns and
Business Processes.

OOMediator: Define how concepts/relations can be mapped to another ontology.
Mapping languages (under development) are basically powerful rule languages.

WGMediator: How can a dervice resolve a goal which does not “exactly” match? E.g.
different interaction protocols require to split/merge messages, change order of
messages, etc.

GGMediator: A goals can be a refinement of a more general goal, “Book a Trip” is

more general than “Book a Flight”, etc

29



WSMO Mediators (2/2)

Properties:

30



SWSF

The Semantic Web Serice Framework
http://www.w3.org/Submission/SWSF/

I Roots in OWL-S and PSL

I A first-order ontology for Seamntic Web services, using the
first-order notation of processes from PSL (ISO standard).

I remedies some weaknesses of OWL-S, by not being restricted
to description logics.

I “grounding” problem not clearly addressed. No practical
implementation efforts.

I also defines its own ontology and rule languages.

31

http://www.w3.org/Submission/SWSF/


OWL-S, WSMO, SWSF

I “Heavy-weight” approaches

I Own languages, seprate annotations

I still to a large extent research/acedemic (except big research
projects with industry participation

I not much emphasis so far to align with other WS-* standards
(BPEL, WS-CDL, WS-Policy, WS-Security), except WSDL
grounding.

32



A minimalistic approach: WSDL-S

I evolutionary and compatible upgrade of existing WS standards

I avoid duplication of what is already defined in WSDL

I minimal language committment (OWL, UML, ? ...)

I Basically: embed what is needed from OWL-S profile directly
in WSDL

I Why? Community is familiar with WSDL, provide a cautious
extension.

I Claim: more practical approach for adoption

33



WSDL-S
http://www.w3.org/Submission/WSDL-S/

I define service category
I link operations to externally defined operation ontology
I link message types to externally defined concepts (e.g. defined in OWL)
I link operations to xternally defined preconditions and effects

No committment to formal language to be used, i.e. notions of match unclear.
For non-functional aspects, exploit existing WS-* standards. (not defined yet how),
e.g. “We are investigating how to represent QoS assertions using ontologies and rules
by extending the WS-Policy framework”

34

http://www.w3.org/Submission/WSDL-S/


35



Comparison: Coverage of basic representational aspects

1. General service classifications: common to all approaches

2. pre- and postconditions: common to all approaches

3. behavior/protocol description of the service OWL-S, WSMO, SWSF allow to
encode complex behavior, WSDL-S implicit, or e.g. by embedding into
BPEL4WS

4. non-functional aspects (QoS, cost, availability, etc.) OWL-S, WSMO, SWSF
provide extensible sets of non-functional properties, WSDL-S sees this out of
scope

I Mediators: Own concept in WSMO, in OWL-S and SWSF not treated
separately, but just as special kind of service.

I Goal/requester view: Motivation to in WSMO separate concerns, goals/requests

not treated in WSDL-S. Main issues:
I How is a request/query to be formulated?
I What are the related notions of “match”?
→ a certain degree of language committment seems necessary

36



Comparison: Coverage of basic representational aspects

1. General service classifications: common to all approaches

2. pre- and postconditions: common to all approaches

3. behavior/protocol description of the service OWL-S, WSMO, SWSF allow to
encode complex behavior, WSDL-S implicit, or e.g. by embedding into
BPEL4WS

4. non-functional aspects (QoS, cost, availability, etc.) OWL-S, WSMO, SWSF
provide extensible sets of non-functional properties, WSDL-S sees this out of
scope

I Mediators: Own concept in WSMO, in OWL-S and SWSF not treated
separately, but just as special kind of service.

I Goal/requester view: Motivation to in WSMO separate concerns, goals/requests

not treated in WSDL-S. Main issues:
I How is a request/query to be formulated?
I What are the related notions of “match”?
→ a certain degree of language committment seems necessary

36



Comparison: Coverage of basic representational aspects

1. General service classifications: common to all approaches

2. pre- and postconditions: common to all approaches

3. behavior/protocol description of the service OWL-S, WSMO, SWSF allow to
encode complex behavior, WSDL-S implicit, or e.g. by embedding into
BPEL4WS

4. non-functional aspects (QoS, cost, availability, etc.) OWL-S, WSMO, SWSF
provide extensible sets of non-functional properties, WSDL-S sees this out of
scope

I Mediators: Own concept in WSMO, in OWL-S and SWSF not treated
separately, but just as special kind of service.

I Goal/requester view: Motivation to in WSMO separate concerns, goals/requests

not treated in WSDL-S. Main issues:
I How is a request/query to be formulated?
I What are the related notions of “match”?
→ a certain degree of language committment seems necessary

36



Standardization Activities

I W3C Semantic Annotations for WSDL Working Group

I Charter currently being drafted
I WSDL-S a likely starting point

I W3C SWS IG http://www.w3.org/2005/09/sws-ig-charter

I OASIS Semantic Web Services Architecture and Information Model

37



Issues/Connections

I No agreement yet in the community on formal underpinnings.

I Conections to multiple fields in AI:

I Formal languages, reasoning (Description Logics Reasoning, Query
Answering, Theroem Proving, Logic Programming)

I Reasoning about processes, dynamics (bi-simulation, planning)
I Multi-agent systems (probably similar conceptual frameworks, problems)

I Strong industry interest!

38



Summary

This talk was restricted to representational issues, not the methods
to be applied:

I Outline application area

I “Service annotation” as the next step after annotation of static data on
the web (Semantic web)

I Proposals/Aproaches

I Representational aspects

You want to know more?

39



Summary

This talk was restricted to representational issues, not the methods
to be applied:

I Outline application area

I “Service annotation” as the next step after annotation of static data on
the web (Semantic web)

I Proposals/Aproaches

I Representational aspects

You want to know more?

39



Summary

This talk was restricted to representational issues, not the methods
to be applied:

I Outline application area

I “Service annotation” as the next step after annotation of static data on
the web (Semantic web)

I Proposals/Aproaches

I Representational aspects

You want to know more?

39



Summary

This talk was restricted to representational issues, not the methods
to be applied:

I Outline application area

I “Service annotation” as the next step after annotation of static data on
the web (Semantic web)

I Proposals/Aproaches

I Representational aspects

You want to know more?

39



Summary

This talk was restricted to representational issues, not the methods
to be applied:

I Outline application area

I “Service annotation” as the next step after annotation of static data on
the web (Semantic web)

I Proposals/Aproaches

I Representational aspects

You want to know more?

39



Outlook

I You want about how methodology/methods from your course
can be deployed here?

I Discuss concrete use cases?
I Investigate WS-* standards in detail?
I Get your hands dirty in programming WS? ;-)
I Help in developing intellligent Web, intelligent Web Services?

Posibilidades:
I Proyectos fin de carera!
I Becas para proyectos concretos posible
I Colaboraciones internacionales! (DERI, W3C, TU Viena,

Univ.Calabria, etc.)

Expectacónes:
I Motivación, para trabajar y aprender en un area desarollando

rapido (muchas specificaciónes largos solo online, . . . )
I Desaf́ıo: Cobinación de aspectos muy practicos con teoria y

IA!
I SOAs son el futuro, hay mucho potencial!

40



Outlook

I You want about how methodology/methods from your course
can be deployed here?

I Discuss concrete use cases?
I Investigate WS-* standards in detail?
I Get your hands dirty in programming WS? ;-)
I Help in developing intellligent Web, intelligent Web Services?

Posibilidades:
I Proyectos fin de carera!
I Becas para proyectos concretos posible
I Colaboraciones internacionales! (DERI, W3C, TU Viena,

Univ.Calabria, etc.)

Expectacónes:
I Motivación, para trabajar y aprender en un area desarollando

rapido (muchas specificaciónes largos solo online, . . . )
I Desaf́ıo: Cobinación de aspectos muy practicos con teoria y

IA!
I SOAs son el futuro, hay mucho potencial!

40



Outlook

I You want about how methodology/methods from your course
can be deployed here?

I Discuss concrete use cases?
I Investigate WS-* standards in detail?
I Get your hands dirty in programming WS? ;-)
I Help in developing intellligent Web, intelligent Web Services?

Posibilidades:
I Proyectos fin de carera!
I Becas para proyectos concretos posible
I Colaboraciones internacionales! (DERI, W3C, TU Viena,

Univ.Calabria, etc.)

Expectacónes:
I Motivación, para trabajar y aprender en un area desarollando

rapido (muchas specificaciónes largos solo online, . . . )
I Desaf́ıo: Cobinación de aspectos muy practicos con teoria y

IA!
I SOAs son el futuro, hay mucho potencial!40



Otros asignaturas

I Otoño: Axel Polleres, David Pearce “Métodos Avanzados de
Razonamiento para Tecnoloǵıas del Conocimiento y Web
Semántica”

I Primavera: Axel Polleres “Next Web Generation” (libre
elecci’on, en Inglés)

41



Thank you for your attention!

42


	Overview

