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Motivation � Hybrid Knowledge Bases

Combine rules with negation as failure with classical theories:
• Hyrid KB approaches rely on (variants of) the Answer Set
Semantics. [Rosati,2005/2005b/2006, Heymans, et al. 2006]

• De�ned for syntactically limited programs/FOL theories
• All give a modular de�nition of models by projection+reduct.

Questions:

RDFS

    Ontologies (OWL) Rules

• Can we generalize these combinations in a (non-classical)
logic, i.e. with a non-modular model de�nition?

• Does this provide us with notions of equivalence commonly
used (strong equivalence, uniform equivalence, etc.)?
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Generalized De�nition
NM-models
Example

Hybrid Knowledge Bases � Generalized De�nition

K = (T ,P) hybrid knowledge base:

• classical �rst-order theory T over function-free language
LT = 〈C,PT 〉

• a logic program P over function-free language
L = 〈C,PT ∪ PP〉, i.e. a set of rules:

a1∨a2∨. . .∨ak∨¬ak+1∨. . .∨¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn

where PT ∩ PP = ∅
Note:

• T and P talk about the same constants, and

• allowed predicate symbols in P are a superset of the predicate
symbols in LT .
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NM-models
Example

Hybrid Knowledge Bases � Projection:

Overall idea for a nonmonotonic semantics: �evaluate� P wrt a
classical model of the theory and then compute stable models.

Let P be a ground program an I = 〈U, I〉 an L-structure, with
U = (D,σ).

Π(P, I), the projection of P wrt I, obtained by

1 deleting each rule with head literal p(t) (or ¬p(t)) over
AtD(C,PT ) such that p(σ(t)) ∈ I (or p(σ(t)) 6∈ I)

2 deleting each rule with body literal p(t) (or ¬p(t)) over
AtD(C,PT ) such that p(σ(t)) 6∈ I (or p(σ(t)) ∈ I);

and deleting occurrences of literals from LT from remaining rules.
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Hybrid Knowledge Bases � NM-model:

Overall idea for a nonmonotonic semantics: �evaluate� P wrt a
classical model of the theory and then compute stable models.

Let K = (T ,P) be a hybrid knowledge base. An NM-model

M = 〈U, I〉 of a hybrid knowledge base K is a �rst-order
L-structure such that

1 M|LT is a model of T and

2 M|LP is a stable model set of Π(grU (P),M|LT ), i.e.
M|LP is a minimal Herbrand Model of the reduct

Π(grU (P),M)M|LP , obtained by taking all rules:
• such thatM|LP |= ai for negative head atoms ai and
• I 6|= bj for all negative body atoms bj .
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Generalized De�nition
NM-models
Example

Example � a small Hybrid KB:

Let K = (T ,P) with

T : Each foaf:Person is a foaf:Agent:

∀x.PERSON(x)→ AGENT (x)
AGENT (David)

P: Some nonmonotonic rule on top

PERSON(x)← pcmember(x, LPNMR), AGENT (x),¬machine(x)
pcmember(David, LPNMR)

Is David a PERSON?

Recall: ¬ is �negation as failure� here!
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Example - NM-models:

Classical models of T :
∀x.PERSON(x)→ AGENT (x)
AGENT (David)

M1|LT = {AGENT (David),¬PERSON(David),¬AGENT (LPNMR), . . .}
M2|LT = {AGENT (David), PERSON(David),¬AGENT (LPNMR), . . .}

grU (P)
PERSON(David)←
pcmember(David, LPNMR), AGENT (David),¬machine(David)
PERSON(LPNMR)←
pcmember(LPNMR, LPNMR), AGENT (LPNMR),¬machine(LPNMR)

pcmember(David, LPNMR)

Is David a PERSON?

Π(grU (P),M2|LT )

pcmember(David, LPNMR)

One stable model...

Is David a PERSON? Yes!
PERSON(David) in all NM-models, i.e. K |=NM PERSON(David)
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Equilibrium Logic

Back to our question for a non-classical logic which covers this. . .

• Equilibrium logic (Pearce, 1997) generalizes stable model
semantics and answer set semantics for logic programs to
arbitrary propositional theories.

• It is a nonmonotonic extension of the logic of Here-and-there
(with strong negation).

• Model theory based on Kripke semantics for intuitionistic logic

• We need a �rst-order verstion here...
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Quanti�ed Here-and-there Logic

• QHTs is complete for linear Kripke frames with two worlds
�here� and �there� with a �static� domain over both worlds:
h ≤ t.

• here-and-there structures: M = 〈(D,σ), Ih, It〉
• Ih, It are �rst-order-interpretations over D such that Ih ⊆ It.

The models are extended to all formulas via the rules known in
intuitionistic logic, notions of validity and logical consequence
relation are the ones for (intuitionistic) Kripke semantics.
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Quanti�ed Here-and-there Logic

For w ∈ {h, t}:
• M, w |= ϕ ∧ ψ i�M, w |= ϕ andM, w |= ψ.

• M, w |= ϕ ∨ ψ i�M, w |= ϕ orM, w |= ψ.

• M, t |= ϕ→ ψ i�M, t 6|= ϕ orM, t |= ψ.

• M, h |= ϕ→ ψ i�M, t |= ϕ→ ψ andM, h 6|= ϕ orM, h |= ψ.

• M, w |= ¬ϕ i�M, t 6|= ϕ.

• M, t |= ∀xϕ(x) i�M, t |= ϕ(d) for all d ∈ D.

• M, h |= ∀xϕ(x) i�M, t |= ∀xϕ(x) andM, h |= ϕ(d) for all d ∈ D.

• M, w |= ∃xϕ(x) i�M, w |= ϕ(d) for some d ∈ D.
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Quanti�ed Equilibrium Logic (QEL)

• We write QHTs-structures more brie�y as ordered pairs of
atoms 〈H,T 〉, with H ⊆ T .

• An QHTs-Structure 〈H,T 〉 is said to be total if H = T

• Order relation: 〈H,T 〉� 〈H ′, T ′〉 if T = T ′ and H ⊆ H ′
• 〈H,T 〉 is an equilibrium model of Π if is

(i) 〈H,T 〉minimal under �, and
(ii) 〈H,T 〉 is total.

QEL is determined by the equilibrium models of a theory.
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Quanti�ed Equilibrium Logic and Answer Set Semantics

• Equilibrium Logic generalizes Answer Set semantics for arbitrary
formulae (including disjunctive and nested programs)

• Any rule

a1 ∨ a2 ∨ . . .∨ ak ∨¬ak+1 ∨ . . .∨¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn
is just treated as (universally closed) formula in QEL:

(∀)a1∨a2∨. . .∨ak∨¬ak+1∨. . .∨¬al ← b1∧. . .∧bm∧¬bm+1∧. . .∧¬bn

• Equilibrium models correspond to (open) answer sets: 〈T, T 〉 is a
equilibrium model of P i� T is an answer set of Π.

• So, for K = (∅, P ) answer sets and QEL-models correspond!

UNA [Pearce&Valverde, 2005] and non-UNA [Pearce&Valverde, 2006]

versions of QEL available.
13 Axel Polleres A Logic for Hybrid Rules
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Embedding Hybrid Knowledge Bases

Q: Does the correspondence extend to hybrid KBs? Yes!

Idea: de�ne embedding based on the observation that adding LEM
makes intuitionistic logic classical!

Given a hybrid KB K = (T ,P) we call T ∪ st(T ) ∪ P the stable
closure of K, where st(T ) = {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }.

Wake up! Main theorem of the paper!!! ;-)

Theorem

Let K = (T ,P) be a hybrid knowledge base. LetM = 〈U, T, T 〉
be a total here-and-there model of the stable closure of K. Then
M is an equilibrium model if and only if it is an NM-model of K.

14 Axel Polleres A Logic for Hybrid Rules
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Example - stable closure of K:

st(K) = T ∪ st(T ) ∪ P
∀x.PERSON(x)→ AGENT (x)
AGENT (David)
∀x.PERSON(x) ∨ ¬PERSON(x)
∀x.AGENT (x) ∨ ¬AGENT (x)
∀x.PERSON(x)← pcmember(x, LPNMR) ∧AGENT (x) ∧ ¬machine(x)

pcmember(David, LPNMR)

There IS a classical model of this theory
M = {¬PERSON(David),machine(David), . . .}

Thus:
K 6|=FOL PERSON(David)

15 Axel Polleres A Logic for Hybrid Rules
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The total HT-modelMHT = 〈H,T 〉 corresponding toM with:
H = T = {machine(David), . . .}
is NO Equilibrium model, since there is a modelM′

HT �MHT :

with: H ′ = {. . .}
T = {machine(David), . . .}

All Equilibrium models include PERSON(David), thus:
st(K) |=QEL PERSON(David)

√
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Conclusions/Observations:

• Quanti�ed Equilibrium Logic provides a powerful and intuitive
tool as a �carrier� logic for Hybrid KBs

• Embedding is simple: add LEM for classical predicates.
• Why this works is not so surprising: QHT s based on
intuitionistic logic, adding LEM enforces totalization of HT
models on the respective predicates, i.e. make them �classical�.

• No reducts/grounding involved, this gives us:
• a semantics for nested logic programs. Well-investigated for
propositional LPs, �rst-order case needs more investigation,
respective results on QEL relatively new.

• results on strong equivalence for Equilibrium Logic carry over:
HT-model equivalence amounts to strong equivalence!
Important notion for nonmonotonic logic programs, program
optimization, meaning preserving transformations of hybrid
KB's, etc.

17 Axel Polleres A Logic for Hybrid Rules
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Future Work:

• Paper covers only equality-free FOL embedding (results
already there in [Pearce&Valverde, 2006])

• Investigation on related (IJCAI) approaches:
• Logic of minimal knowledge and negation as failure (MKNF)
[Motik & Rosati, 2007]

• First-Order Autoepistemic Logic [de Bruijn et al., 2007]
• Circumscription [Ferraris,Lee,Lifschitz, 2007]

Get the paper at: http://polleres.net/publications.html

18 Axel Polleres A Logic for Hybrid Rules
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Variants discussed in the paper:

UNA variables disj. neg. LT
atoms

r-hybrid [Rosati,2005] yes LP -safe pos. no
r+-hybrid [Rosati,2005b] no LP -safe pos. no
rw-hybrid [Rosati, 2006] yes weak LP -safe pos. no
g-hybrid [Heymans, et al. 2006] no guarded neg.∗ yes

∗ g-hybrid allows negation in the head but at most one positive head atom

Table: Di�erent variants of hybrid KBs

19 Axel Polleres A Logic for Hybrid Rules
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