
From SPARQL to Rules (and back)

Axel Polleres1

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

World Wide Web Conference 2007

A. Polleres – From SPARQL to Rules (and back) 1 / 29



Outline

Rules and SPARQL
Rules for the Semantic Web

From SPARQL to (LP style) rules . . .
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

. . . and back
Use SPARQL as rules
Mixing data and rules

A. Polleres – From SPARQL to Rules (and back) 2 / 29



Rules for/on the Web: Where are we?

I Several existing systems and rules languages on top of RDF/RDFS:

I TRIPLE , N3/CWM, dlvhex , SWI-Prolog’s SW library

I RIF about to make those interoperable by providing a common
exchange format

I How to combine SPARQL with (Logic Programming style) rules
languages is unclear

I Rule languages are closely related to query languages: Datalog!

I BTW: How do we integrate with RDFS, OWL?

A. Polleres – From SPARQL to Rules (and back) 3 / 29



Rules for/on the Web: Where are we?

I Several existing systems and rules languages on top of RDF/RDFS:
I TRIPLE , N3/CWM, dlvhex , SWI-Prolog’s SW library

I RIF about to make those interoperable by providing a common
exchange format

I How to combine SPARQL with (Logic Programming style) rules
languages is unclear

I Rule languages are closely related to query languages: Datalog!

I BTW: How do we integrate with RDFS, OWL?

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

?

A. Polleres – From SPARQL to Rules (and back) 3 / 29



Outline

Rules and SPARQL
Rules for the Semantic Web

From SPARQL to (LP style) rules . . .
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

. . . and back
Use SPARQL as rules
Mixing data and rules

A. Polleres – From SPARQL to Rules (and back) 4 / 29



SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Calgary", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 5 / 29



SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Calgary", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 5 / 29



SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Calgary", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 5 / 29



SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Calgary", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 5 / 29



SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Calgary", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 5 / 29



SPARQL and LP 2/2

We start with Datalog with some additional assumptions:
I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I We do it by example here, find the formal stuff in the paper!

(Note: The example translations here are based on dlvhex

(http: // con. fusion. at/ dlvhex/ ) syntax, similarly using e.g. SWI-Prolog’s rdf db

module, see, http: // www. swi-prolog. org/ packages/ semweb. html .)

A. Polleres – From SPARQL to Rules (and back) 6 / 29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html


SPARQL and LP 2/2

We start with Datalog with some additional assumptions:
I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I We do it by example here, find the formal stuff in the paper!

(Note: The example translations here are based on dlvhex

(http: // con. fusion. at/ dlvhex/ ) syntax, similarly using e.g. SWI-Prolog’s rdf db

module, see, http: // www. swi-prolog. org/ packages/ semweb. html .)

A. Polleres – From SPARQL to Rules (and back) 6 / 29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html


SPARQL and LP 2/2

We start with Datalog with some additional assumptions:
I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I We do it by example here, find the formal stuff in the paper!

(Note: The example translations here are based on dlvhex

(http: // con. fusion. at/ dlvhex/ ) syntax, similarly using e.g. SWI-Prolog’s rdf db

module, see, http: // www. swi-prolog. org/ packages/ semweb. html .)

A. Polleres – From SPARQL to Rules (and back) 6 / 29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html


SPARQL and LP 2/2

We start with Datalog with some additional assumptions:
I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I We do it by example here, find the formal stuff in the paper!

(Note: The example translations here are based on dlvhex

(http: // con. fusion. at/ dlvhex/ ) syntax, similarly using e.g. SWI-Prolog’s rdf db

module, see, http: // www. swi-prolog. org/ packages/ semweb. html .)

A. Polleres – From SPARQL to Rules (and back) 6 / 29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html


SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – From SPARQL to Rules (and back) 7 / 29



SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – From SPARQL to Rules (and back) 7 / 29



SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – From SPARQL to Rules (and back) 7 / 29



SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – From SPARQL to Rules (and back) 7 / 29



SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – From SPARQL to Rules (and back) 7 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – From SPARQL to Rules (and back) 8 / 29



SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – From SPARQL to Rules (and back) 9 / 29



SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – From SPARQL to Rules (and back) 9 / 29



SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – From SPARQL to Rules (and back) 9 / 29



SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – From SPARQL to Rules (and back) 10 / 29



SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – From SPARQL to Rules (and back) 10 / 29



SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice” null

<ex.org/bob#me> ”Bob” null

<ex.org/bob#me> null ”Bobby”

A. Polleres – From SPARQL to Rules (and back) 10 / 29



SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – From SPARQL to Rules (and back) 11 / 29



SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – From SPARQL to Rules (and back) 11 / 29



SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – From SPARQL to Rules (and back) 12 / 29



SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – From SPARQL to Rules (and back) 12 / 29



SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – From SPARQL to Rules (and back) 12 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – From SPARQL to Rules (and back) 13 / 29



SPARQL and LP: OPT Patterns – Example from the paper

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – From SPARQL to Rules (and back) 14 / 29



SPARQL and LP: OPT Patterns – Example from the paper

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – From SPARQL to Rules (and back) 14 / 29



SPARQL and LP: OPT Patterns – Example from the paper

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – From SPARQL to Rules (and back) 14 / 29



SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Pérez et

al. [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 15 / 29



SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Pérez et

al. [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 15 / 29



SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Pérez et

al. [Perez et al., 2006]!

A. Polleres – From SPARQL to Rules (and back) 15 / 29



SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

./

?X2 ?N

:a null

:b ”Alice”
:c ”Bobby”

alice.org#me null

=

?X1 ?N X2

:b null :a
:b null alice.org#me

alice.org#me ”Alice” :b

What’s wrong here? Join over null , as if it was a normal constant.

Compared with SPARQL’s normative semantics is too cautious!

A. Polleres – From SPARQL to Rules (and back) 16 / 29



SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

./

?X2 ?N

:a null

:b ”Alice”
:c ”Bobby”

alice.org#me null

=

?X1 ?N X2

:b null :a
:b null alice.org#me

alice.org#me ”Alice” :b

What’s wrong here? Join over null , as if it was a normal constant.

Compared with SPARQL’s normative semantics is too cautious!

A. Polleres – From SPARQL to Rules (and back) 16 / 29



SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

=

?X1 ?N X2

:a ”Bob” :a
:a ”Bob” alice.org#me

:b :a
:b ”Alice” :b
:b ”Bobby” :c
:b alice.org#me

:c ”Bob” :a
:c ”Bob” alice.org#me

alice.org#me ”Alice” :a
alice.org#me ”Alice” :b
alice.org#me ”Alice” alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres – From SPARQL to Rules (and back) 17 / 29



SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

=

?X1 ?N X2

:a ”Bob” :a
:a ”Bob” alice.org#me

:b :a
:b ”Alice” :b
:b ”Bobby” :c
:b alice.org#me

:c ”Bob” :a
:c ”Bob” alice.org#me

alice.org#me ”Alice” :a
alice.org#me ”Alice” :b
alice.org#me ”Alice” alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres – From SPARQL to Rules (and back) 17 / 29



SPARQL and LP: OPT Patterns – third alternative

One could think of a third alternative:

?X1 ?N

:a ”Bob”
:b NULL
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a NULL
:b ”Alice”
:c ”Bobby”

alice.org#me NULL

=
?X1 ?N X2

alice.org#me ”Alice” :b

In RDBMS implementations of OUTER JOINS, NULL values usually
don’t join with anything, i.e. this is more strict than the current SPARQL
definition!

A. Polleres – From SPARQL to Rules (and back) 18 / 29



SPARQL and LP: OPT Patterns – third alternative

One could think of a third alternative:

?X1 ?N

:a ”Bob”
:b NULL
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a NULL
:b ”Alice”
:c ”Bobby”

alice.org#me NULL

=
?X1 ?N X2

alice.org#me ”Alice” :b

In RDBMS implementations of OUTER JOINS, NULL values usually
don’t join with anything, i.e. this is more strict than the current SPARQL
definition!

A. Polleres – From SPARQL to Rules (and back) 18 / 29



Semantic variations of SPARQL

According to these three alternatives of treatment of possibly
null-joining variables, the paper formally defines three semantics
for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

I s-joining: strictly joining semantics

Which is the most intuitive? Open issue.

Now let’s get back to our translation to logic programs...

A. Polleres – From SPARQL to Rules (and back) 19 / 29



Semantic variations of SPARQL

According to these three alternatives of treatment of possibly
null-joining variables, the paper formally defines three semantics
for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

I s-joining: strictly joining semantics

Which is the most intuitive? Open issue.

Now let’s get back to our translation to logic programs...

A. Polleres – From SPARQL to Rules (and back) 19 / 29



Semantic variations of SPARQL

According to these three alternatives of treatment of possibly
null-joining variables, the paper formally defines three semantics
for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

I s-joining: strictly joining semantics

Which is the most intuitive? Open issue.

Now let’s get back to our translation to logic programs...

A. Polleres – From SPARQL to Rules (and back) 19 / 29



SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – From SPARQL to Rules (and back) 20 / 29



SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – From SPARQL to Rules (and back) 20 / 29



SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – From SPARQL to Rules (and back) 20 / 29



SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – From SPARQL to Rules (and back) 20 / 29



SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – From SPARQL to Rules (and back) 20 / 29



SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:

We need to take care for variables which are joined and possibly

unbound, due to the special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).

answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres – From SPARQL to Rules (and back) 21 / 29



SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:

We need to take care for variables which are joined and possibly

unbound, due to the special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).

answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres – From SPARQL to Rules (and back) 21 / 29



SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Perez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of the paper [Polleres, 2006]) shows that this
translation is optimal: Non-recursive Datalog with negation as
failure is also PSPACE complete!

A. Polleres – From SPARQL to Rules (and back) 22 / 29



SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Perez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of the paper [Polleres, 2006]) shows that this
translation is optimal: Non-recursive Datalog with negation as
failure is also PSPACE complete!

A. Polleres – From SPARQL to Rules (and back) 22 / 29



SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Perez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of the paper [Polleres, 2006]) shows that this
translation is optimal: Non-recursive Datalog with negation as
failure is also PSPACE complete!

A. Polleres – From SPARQL to Rules (and back) 22 / 29



From SPARQL to Rules . . .

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in the paper

I FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

A. Polleres – From SPARQL to Rules (and back) 23 / 29



From SPARQL to Rules . . .

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in the paper

I FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

A. Polleres – From SPARQL to Rules (and back) 23 / 29



From SPARQL to Rules . . .

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in the paper

I FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

A. Polleres – From SPARQL to Rules (and back) 23 / 29



From SPARQL to Rules . . .

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in the paper

I FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

A. Polleres – From SPARQL to Rules (and back) 23 / 29



From SPARQL to Rules . . .

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in the paper

I FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

A. Polleres – From SPARQL to Rules (and back) 23 / 29



. . . and back

Some more things discussed in the paper (appetizer):

I Extend the translation to cover CONSTRUCT queries

I CONSTRUCTs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

I The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

I The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst’s fragment [ter Horst, 2005])
⇒ extended entailment regimes for SPARQL!

A. Polleres – From SPARQL to Rules (and back) 24 / 29



. . . and back

Some more things discussed in the paper (appetizer):

I Extend the translation to cover CONSTRUCT queries

I CONSTRUCTs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

I The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

I The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst’s fragment [ter Horst, 2005])
⇒ extended entailment regimes for SPARQL!

A. Polleres – From SPARQL to Rules (and back) 24 / 29



. . . and back

Some more things discussed in the paper (appetizer):

I Extend the translation to cover CONSTRUCT queries

I CONSTRUCTs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

I The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

I The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst’s fragment [ter Horst, 2005])
⇒ extended entailment regimes for SPARQL!

A. Polleres – From SPARQL to Rules (and back) 24 / 29



. . . and back

Some more things discussed in the paper (appetizer):

I Extend the translation to cover CONSTRUCT queries

I CONSTRUCTs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

I The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

I The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst’s fragment [ter Horst, 2005])
⇒ extended entailment regimes for SPARQL!

A. Polleres – From SPARQL to Rules (and back) 24 / 29



. . . and back

Some more things discussed in the paper (appetizer):

I Extend the translation to cover CONSTRUCT queries

I CONSTRUCTs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

I The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

I The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst’s fragment [ter Horst, 2005])
⇒ extended entailment regimes for SPARQL!

A. Polleres – From SPARQL to Rules (and back) 24 / 29



CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT ?X foaf:name ?Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – From SPARQL to Rules (and back) 25 / 29



CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT ?X foaf:name ?Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – From SPARQL to Rules (and back) 25 / 29



CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT ?X foaf:name ?Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – From SPARQL to Rules (and back) 25 / 29



CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data within RDF:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }

A. Polleres – From SPARQL to Rules (and back) 26 / 29



CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data within RDF:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }

A. Polleres – From SPARQL to Rules (and back) 26 / 29



CONSTRUCT 3/3

Attention! If you apply the translation to LP and two
RDF+CONSTRUCT files refer mutually to each other, you might
get a recursive program!

I even non-stratified negation as failure!
I two basic semantics for such “networked RDF graphs”

possible:
I stable [Polleres, 2006]
I well-founded [Schenk and Staab, 2007]

A. Polleres – From SPARQL to Rules (and back) 27 / 29



Outlook

I Prototype implemented and available at
http://con.fusion.at/dlvhex/

I Tight integration with existing rules engines possible:
I Opens up body of optimization work!
I SPARQL queries in rule bodies

I Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

I tuple-based instead of set-based
I FILTERs treated non-local

I Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres – From SPARQL to Rules (and back) 28 / 29



Outlook

I Prototype implemented and available at
http://con.fusion.at/dlvhex/

I Tight integration with existing rules engines possible:
I Opens up body of optimization work!
I SPARQL queries in rule bodies

I Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

I tuple-based instead of set-based
I FILTERs treated non-local

I Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres – From SPARQL to Rules (and back) 28 / 29



Outlook

I Prototype implemented and available at
http://con.fusion.at/dlvhex/

I Tight integration with existing rules engines possible:
I Opens up body of optimization work!
I SPARQL queries in rule bodies

I Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

I tuple-based instead of set-based
I FILTERs treated non-local

I Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres – From SPARQL to Rules (and back) 28 / 29



Outlook

I Prototype implemented and available at
http://con.fusion.at/dlvhex/

I Tight integration with existing rules engines possible:
I Opens up body of optimization work!
I SPARQL queries in rule bodies

I Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

I tuple-based instead of set-based
I FILTERs treated non-local

I Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres – From SPARQL to Rules (and back) 28 / 29



Outlook

I Prototype implemented and available at
http://con.fusion.at/dlvhex/

I Tight integration with existing rules engines possible:
I Opens up body of optimization work!
I SPARQL queries in rule bodies

I Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

I tuple-based instead of set-based
I FILTERs treated non-local

I Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres – From SPARQL to Rules (and back) 28 / 29



References

Perez, J., Arenas, M., and Gutierrez, C. (2006).

Semantics and complexity of sparql.
Technical Report DB/0605124, arXiv:cs.

Polleres, A. (2006).

SPARQL Rules!
Technical Report GIA-TR-2006-11-28, Universidad Rey Juan Carlos.

Schenk, S. and Staab, S. (2007).

Networked rdf graph networked rdf graphs.
Technical Report 3/2007, Universsity of Koblenz.
available at http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf.

ter Horst, H. J. (2005).

Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving
the owl vocabulary.
Journal of Web Semantics, 3(2).

A. Polleres – From SPARQL to Rules (and back) 29 / 29

http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

	Rules and SPARQL
	Rules for the Semantic Web

	From SPARQL to (LP style) rules …
	Basic Graph Patterns
	GRAPH Patterns
	UNION Patterns
	OPTIONAL and Negation as failure

	…and back
	Use SPARQL as rules
	Mixing data and rules


