
From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps on SPARQL

Axel Polleres (DERI Galway)

Joint work with:
R. Schindlauer (Univ Calabria/TU Vienna), G. Frazzingaro (Univ Calabria), T.Krennwallner

(DERI Galway/TU Vienna), F. Scharffe (LFU Innsbruck)

January 09, 2008

A. Polleres 2008-01-09 1 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Outline

From SPARQL to LP
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL and Negation as failure

Full SPARQL-Spec compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs

SPARQL++ for Ontology alignment
Mapping by SPARQL
Examples
Implementation
Example Translation
RDFS

Wrap-up
A. Polleres 2008-01-09 2 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with negation as
failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Cosenza"
UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Cosenza", Tel).
answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?
I OPTIONAL and UNION cause some trouble, also FILTERs and CONSTRUCTs

A. Polleres 2008-01-09 3 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with negation as
failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Cosenza"
UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Cosenza", Tel).
answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?
I OPTIONAL and UNION cause some trouble, also FILTERs and CONSTRUCTs

A. Polleres 2008-01-09 3 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with negation as
failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Cosenza"
UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Cosenza", Tel).
answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?
I OPTIONAL and UNION cause some trouble, also FILTERs and CONSTRUCTs

A. Polleres 2008-01-09 3 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with negation as
failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Cosenza"
UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Cosenza", Tel).
answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?
I OPTIONAL and UNION cause some trouble, also FILTERs and CONSTRUCTs

A. Polleres 2008-01-09 3 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with negation as
failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Cosenza"
UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Cosenza", Tel).
answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?
I OPTIONAL and UNION cause some trouble, also FILTERs and CONSTRUCTs

A. Polleres 2008-01-09 3 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://www.kr.tuwien.ac.at/research/dlvhex):

I Prolog-like syntax
I We assume availability of built-in predicate

rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable model
semantics) for a language extending Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls (built-in
predicates, also called HEX-atoms).

I rdf[URL](S,P,O) is one such built-in to import RDF data, more HEX-atoms
later.

A. Polleres 2008-01-09 4 / 47

http://www.kr.tuwien.ac.at/research/dlvhex
http://www.dlvsystem.com/

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://www.kr.tuwien.ac.at/research/dlvhex):

I Prolog-like syntax
I We assume availability of built-in predicate

rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable model
semantics) for a language extending Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls (built-in
predicates, also called HEX-atoms).

I rdf[URL](S,P,O) is one such built-in to import RDF data, more HEX-atoms
later.

A. Polleres 2008-01-09 4 / 47

http://www.kr.tuwien.ac.at/research/dlvhex
http://www.dlvsystem.com/

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://www.kr.tuwien.ac.at/research/dlvhex):

I Prolog-like syntax
I We assume availability of built-in predicate

rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable model
semantics) for a language extending Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls (built-in
predicates, also called HEX-atoms).

I rdf[URL](S,P,O) is one such built-in to import RDF data, more HEX-atoms
later.

A. Polleres 2008-01-09 4 / 47

http://www.kr.tuwien.ac.at/research/dlvhex
http://www.dlvsystem.com/

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://www.kr.tuwien.ac.at/research/dlvhex):

I Prolog-like syntax
I We assume availability of built-in predicate

rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable model
semantics) for a language extending Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls (built-in
predicates, also called HEX-atoms).

I rdf[URL](S,P,O) is one such built-in to import RDF data, more HEX-atoms
later.

A. Polleres 2008-01-09 4 / 47

http://www.kr.tuwien.ac.at/research/dlvhex
http://www.dlvsystem.com/

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://www.kr.tuwien.ac.at/research/dlvhex):

I Prolog-like syntax
I We assume availability of built-in predicate

rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable model
semantics) for a language extending Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls (built-in
predicates, also called HEX-atoms).

I rdf[URL](S,P,O) is one such built-in to import RDF data, more HEX-atoms
later.

A. Polleres 2008-01-09 4 / 47

http://www.kr.tuwien.ac.at/research/dlvhex
http://www.dlvsystem.com/

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph) which carries
an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres 2008-01-09 5 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph) which carries
an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres 2008-01-09 5 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph) which carries
an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres 2008-01-09 5 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph) which carries
an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres 2008-01-09 5 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph) which carries
an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres 2008-01-09 5 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres 2008-01-09 6 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M . ?X :age ?Age .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def), triple(X,:age,Age,def),
Age > 30.

unbound variables in FILTERs need to be replaced by constant , to avoid
unsafe rules.

A. Polleres 2008-01-09 7 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M . ?X :age ?Age .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def), triple(X,:age,Age,def),
Age > 30.

unbound variables in FILTERs need to be replaced by constant , to avoid
unsafe rules.

A. Polleres 2008-01-09 7 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def),
null > 30.

unbound variables in FILTERs need to be replaced by constant , to avoid
unsafe rules.

A. Polleres 2008-01-09 7 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres 2008-01-09 8 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres 2008-01-09 8 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres 2008-01-09 8 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z
<alice.org#me> "Alice"
<ex.org/bob#me> "Bob"
<ex.org/bob#me> "Bobby"

A. Polleres 2008-01-09 9 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z
<alice.org#me> "Alice"
<ex.org/bob#me> "Bob"
<ex.org/bob#me> "Bobby"

A. Polleres 2008-01-09 9 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z
<alice.org#me> "Alice"
<ex.org/bob#me> "Bob"
<ex.org/bob#me> "Bobby"

A. Polleres 2008-01-09 9 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z
<alice.org#me> "Alice" null
<ex.org/bob#me> "Bob" null
<ex.org/bob#me> null "Bobby"

A. Polleres 2008-01-09 9 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres 2008-01-09 10 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide? Slightly different
than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres 2008-01-09 10 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a combination of
a join and set difference (see [Pérez et al., 2006]):

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2)∪ (M1 r M2)
where M1 and M2 are variable bindings for P1 and P2, resp.

A. Polleres 2008-01-09 11 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a combination of
a join and set difference (see [Pérez et al., 2006]):

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2)∪ (M1 r M2)
where M1 and M2 are variable bindings for P1 and P2, resp.

A. Polleres 2008-01-09 11 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a combination of
a join and set difference (see [Pérez et al., 2006]):

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2)∪ (M1 r M2)
where M1 and M2 are variable bindings for P1 and P2, resp.

A. Polleres 2008-01-09 11 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference / negation as
failure by combining OPT and FILTER !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference inherent, with the
“!bound” we get it back again “purely”.

A. Polleres 2008-01-09 12 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference / negation as
failure by combining OPT and FILTER !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference inherent, with the
“!bound” we get it back again “purely”.

A. Polleres 2008-01-09 12 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference / negation as
failure by combining OPT and FILTER !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference inherent, with the
“!bound” we get it back again “purely”.

A. Polleres 2008-01-09 12 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2)∪ (M1 r M2)

triple(S,P,O,def) :- ...
answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).
answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).
answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.
A. Polleres 2008-01-09 13 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker __ :a.
__ :a a foaf:Person ; foaf:name "Bob";

foaf:knows __ :b.

__ :b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker __ :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows __ :c.

__ :c a foaf:Person ; foaf:name "Bob" ;
foaf:nick "Bobby".

SELECT *
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

{ answer1("_:a","Bob",def), answer1("_:b",null, def),
answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres 2008-01-09 14 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker __ :a.
__ :a a foaf:Person ; foaf:name "Bob";

foaf:knows __ :b.

__ :b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker __ :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows __ :c.

__ :c a foaf:Person ; foaf:name "Bob" ;
foaf:nick "Bobby".

SELECT *
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

{ answer1("_:a","Bob",def), answer1("_:b",null, def),
answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres 2008-01-09 14 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker __ :a.
__ :a a foaf:Person ; foaf:name "Bob";

foaf:knows __ :b.

__ :b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker __ :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows __ :c.

__ :c a foaf:Person ; foaf:name "Bob" ;
foaf:nick "Bobby".

SELECT *
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N
__ :a "Bob"
__ :b null
__ :c "Bob"
alice.org#me "Alice"

{ answer1("_:a","Bob",def), answer1("_:b",null, def),
answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres 2008-01-09 14 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and nickname
where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a
__ :b "Alice"
__ :c "Bobby"
alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following [Pérez et al., 2006]

A. Polleres 2008-01-09 15 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and nickname
where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a
__ :b "Alice"
__ :c "Bobby"
alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following [Pérez et al., 2006]

A. Polleres 2008-01-09 15 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and nickname
where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a
__ :b "Alice"
__ :c "Bobby"
alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following [Pérez et al., 2006]

A. Polleres 2008-01-09 15 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N
__ :a "Bob"
__ :b null
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a null
__ :b "Alice"
__ :c "Bobby"
alice.org#me null

=

?X1 ?N X2
__ :b null __ :a
__ :b null alice.org#me
alice.org#me "Alice" __ :b

What’s wrong here? Join over null , as if it was a normal constant.
Compared with SPARQL’s notion of compatibility of mappings, this is too cautious!

A. Polleres 2008-01-09 16 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N
__ :a "Bob"
__ :b null
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a null
__ :b "Alice"
__ :c "Bobby"
alice.org#me null

=

?X1 ?N X2
__ :b null __ :a
__ :b null alice.org#me
alice.org#me "Alice" __ :b

What’s wrong here? Join over null , as if it was a normal constant.
Compared with SPARQL’s notion of compatibility of mappings, this is too cautious!

A. Polleres 2008-01-09 16 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a
__ :b "Alice"
__ :c "Bobby"
alice.org#me

=

?X1 ?N X2
__ :a "Bob" __ :a
__ :a "Bob" alice.org#me
__ :b __ :a
__ :b "Alice" __ :b
__ :b "Bobby" __ :c
__ :b alice.org#me
__ :c "Bob" __ :a
__ :c "Bob" alice.org#me
alice.org#me "Alice" __ :a
alice.org#me "Alice" __ :b
alice.org#me "Alice" alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres 2008-01-09 17 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N
__ :a "Bob"
__ :b
__ :c "Bob"
alice.org#me "Alice"

./

?X2 ?N
__ :a
__ :b "Alice"
__ :c "Bobby"
alice.org#me

=

?X1 ?N X2
__ :a "Bob" __ :a
__ :a "Bob" alice.org#me
__ :b __ :a
__ :b "Alice" __ :b
__ :b "Bobby" __ :c
__ :b alice.org#me
__ :c "Bob" __ :a
__ :c "Bob" alice.org#me
alice.org#me "Alice" __ :a
alice.org#me "Alice" __ :b
alice.org#me "Alice" alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres 2008-01-09 17 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly null-joining values
alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres 2008-01-09 18 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly null-joining values
alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres 2008-01-09 18 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly null-joining values
alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres 2008-01-09 18 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres 2008-01-09 19 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres 2008-01-09 19 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres 2008-01-09 19 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres 2008-01-09 19 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres 2008-01-09 19 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:
We need to take care for variables which are joined and possibly unbound, due to the
special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).
answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).
answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres 2008-01-09 20 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:
We need to take care for variables which are joined and possibly unbound, due to the
special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).
answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).
answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres 2008-01-09 20 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is potentially exponential
in the number of possibly-null-joining variables.

I This is not surprising, since the complexity of OPTIONAL/UNION corner
cases is PSPACE, see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech. report version
of [Polleres, 2007]) shows that this translation is optimal: Non-recursive
Datalog with negation as failure is also PSPACE complete!

A. Polleres 2008-01-09 21 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is potentially exponential
in the number of possibly-null-joining variables.

I This is not surprising, since the complexity of OPTIONAL/UNION corner
cases is PSPACE, see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech. report version
of [Polleres, 2007]) shows that this translation is optimal: Non-recursive
Datalog with negation as failure is also PSPACE complete!

A. Polleres 2008-01-09 21 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Basic Graph Patterns GRAPH Patterns FILTERs UNION Patterns OPTIONAL and Negation as failure

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is potentially exponential
in the number of possibly-null-joining variables.

I This is not surprising, since the complexity of OPTIONAL/UNION corner
cases is PSPACE, see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech. report version
of [Polleres, 2007]) shows that this translation is optimal: Non-recursive
Datalog with negation as failure is also PSPACE complete!

A. Polleres 2008-01-09 21 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

Outline

From SPARQL to LP
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL and Negation as failure

Full SPARQL-Spec compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs

SPARQL++ for Ontology alignment
Mapping by SPARQL
Examples
Implementation
Example Translation
RDFS

Wrap-up
A. Polleres 2008-01-09 22 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification compliance

That’s all? So, can we use a bottom-up datalog engine like delvhex as a SPARQL
engine? Not quite . . .

I What we presented so far was reflecting [Pérez et al., 2006] semantics.

I The SPARQL spec defines an algebra which adds some peculiarities, namely:

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to

variables bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries

(more on that in the 3rd part of the talk)

A. Polleres 2008-01-09 23 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle doable by
postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter corresponding to ?Y (ORDER BY),
only output first result (LIMIT 1)⇒ "Alice"

A. Polleres 2008-01-09 24 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle doable by
postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter corresponding to ?Y (ORDER BY),
only output first result (LIMIT 1)⇒ "Alice"

A. Polleres 2008-01-09 24 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle doable by
postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter corresponding to ?Y (ORDER BY),
only output first result (LIMIT 1)⇒ "Alice"

A. Polleres 2008-01-09 24 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle doable by
postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter corresponding to ?Y (ORDER BY),
only output first result (LIMIT 1)⇒ "Alice"

A. Polleres 2008-01-09 24 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres 2008-01-09 25 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres 2008-01-09 25 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres 2008-01-09 25 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(X,Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer1(...,"Bob"), answer1(...,"Bob") },
2 solutions, leave projection to postprocessing !

A. Polleres 2008-01-09 25 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(..., "Bob"), answer1(..., "Bobby"),
answer1(..., "Bob") },
but expected 4 solutions!

A. Polleres 2008-01-09 26 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(..., "Bob"), answer1(..., "Bobby"),
answer1(..., "Bob") },
but expected 4 solutions!

A. Polleres 2008-01-09 26 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob". _:a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,1,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,2,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(...,"Bob"), answer1(...,"Bobby"),
answer1(...,"Bob"), answer1(...,"Bob") },
Add a new constant for any "branch" of a UNION.

A. Polleres 2008-01-09 26 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

Needs 3 case distinctions:

I There is an email address and the FILTER is fulfilled (join)

I There is an email address and the FILTER is not fulfilled (leave ?M unbound)

I There is no email address (leave ?M unbound)

A. Polleres 2008-01-09 27 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

Needs 3 case distinctions:

I There is an email address and the FILTER is fulfilled (join)

I There is an email address and the FILTER is not fulfilled (leave ?M unbound)

I There is no email address (leave ?M unbound)

A. Polleres 2008-01-09 27 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up ORDER BY, LIMIT, OFFSET Multi-set semantics FILTERs in OPTIONALs

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

answer1P(Age,N,M,X,def) :- tripleQ(X,foaf:name,N,def), tripleQ(X,:age,Age,def),
answer2P(M,X,def), Age > 30.

answer1P(Age,N,null,X,def) :- tripleQ(X,foaf:name,N,def),
tripleQ(X,:age,Age,def),
answer2P(M,X,def), not Age > 30.

answer1P(Age,N,null,X,def) :- tripleQ(X,foaf:name,N,def),
tripleQ(X,:age,Age,def), not answer2’P(X,def).

answer2P(M,X,def) :- tripleQ(X,foaf:mbox,M,def).
answer2’P(X,def) :- answer2P(M,X,def).
answerQ(N,M) :- answer1P(Age,N,M,X,def).

A. Polleres 2008-01-09 27 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Outline

From SPARQL to LP
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL and Negation as failure

Full SPARQL-Spec compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs

SPARQL++ for Ontology alignment
Mapping by SPARQL
Examples
Implementation
Example Translation
RDFS

Wrap-up
A. Polleres 2008-01-09 28 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Use Case – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

We define some useful extensions of SPARQL – SPARQL++ – and our
translation towards a language to define such mappings

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres 2008-01-09 29 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Use Case – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

We define some useful extensions of SPARQL – SPARQL++ – and our
translation towards a language to define such mappings

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres 2008-01-09 29 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Use Case – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

We define some useful extensions of SPARQL – SPARQL++ – and our
translation towards a language to define such mappings

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres 2008-01-09 29 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Use Case – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

We define some useful extensions of SPARQL – SPARQL++ – and our
translation towards a language to define such mappings

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres 2008-01-09 29 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping Scenarios

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

⊆

Expressible by rdfs:subPropertyOf:

VCard:FN rdfs:subPropertyoF foaf:name .

A. Polleres 2008-01-09 30 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping Scenarios

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

Also expressible in RDFS or in OWL DL:

VCard:FN rdfs:subPropertyOf foaf:name.
VCard:FN rdfs:domain foaf:Person.

A. Polleres 2008-01-09 30 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping Scenarios

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

Also expressible in RDFS or in OWL DL:

VCard:FN v foaf:name
∃VCard:FN.> v foaf:Person

A. Polleres 2008-01-09 30 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping Scenarios

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

 VCard:Family

VCard:Given

⊆

Needs string concatenation, not expressible in OWL or RDFS...
maybe SWRL can help, but
(1) implementations missing
(2) no W3C stamp

A. Polleres 2008-01-09 30 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping Scenarios

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

 VCard:Family

VCard:Given

⊆

foaf:phone (URI)VCard:tel (xsd:String)
⊆

What shall we do here?
Needs conversion from String to rdf:Resource (URI)...how?
Let’s see what SPARQL can do for us...

A. Polleres 2008-01-09 30 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres 2008-01-09 31 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 1

vCard

VCard:FN

FOAF

foaf:name

⊆

CONSTRUCT { ?X foaf:name ?Y }
WHERE { ?X VCard:FN ?Y }

Easy!

A. Polleres 2008-01-09 32 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 1

vCard

VCard:FN

FOAF

foaf:name

⊆

CONSTRUCT { ?X foaf:name ?Y }
WHERE { ?X VCard:FN ?Y }

Easy!

A. Polleres 2008-01-09 32 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 2

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

CONSTRUCT { ?X foaf:name ?Y . ?X rdf:type foaf:person . }
WHERE { ?X VCard:FN ?Y }

No problem either.

A. Polleres 2008-01-09 33 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 2

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

CONSTRUCT { ?X foaf:name ?Y . ?X rdf:type foaf:person . }
WHERE { ?X VCard:FN ?Y }

No problem either.

A. Polleres 2008-01-09 33 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ??? }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

A. Polleres 2008-01-09 34 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ??? }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

How to tackle? FILTERs?

A. Polleres 2008-01-09 34 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ?FN }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

FILTER(?FN = fn:concat(?N," ",?F))}

Doesn’t work :-| FILTERs only bind variables, can’t create new bindings

A. Polleres 2008-01-09 34 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name fn:concat(?N," ",?F) }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

You rather want built-in functions in the CONSTRUCT part.
This is what SPARQL++ provides.

A. Polleres 2008-01-09 34 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name fn:concat(?N," ",?F) }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

You rather want built-in functions in the CONSTRUCT part.
This is what SPARQL++ provides.
Attention: Value generation in the CONSTRUCT part might again raise
non-termination issues!

A. Polleres 2008-01-09 34 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres 2008-01-09 35 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres 2008-01-09 35 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres 2008-01-09 35 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 5

We want more: Aggregates!

Example: Map from DOAP to RDF Open Source Software Vocabulary:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

A. Polleres 2008-01-09 36 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 5

We want more: Aggregates!

Example: Map from DOAP to RDF Open Source Software Vocabulary:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

A. Polleres 2008-01-09 36 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres 2008-01-09 37 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres 2008-01-09 37 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres 2008-01-09 37 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres 2008-01-09 37 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

Web = HTML + Links

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

Semantic Web = RDF + Mappings

A. Polleres 2008-01-09 38 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Our Implementation: HEX-Programs

I We again translate (possibly nested and cross-referencing) SPARQL
queries to Logic Programs with external atoms (HEX-atoms)

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:2

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

2Note: Generally, HEX-programms also allow disjunctive rules, but not necessary here.
A. Polleres 2008-01-09 39 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Our Implementation: HEX-Programs

I We again translate (possibly nested and cross-referencing) SPARQL
queries to Logic Programs with external atoms (HEX-atoms)

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:2

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

2Note: Generally, HEX-programms also allow disjunctive rules, but not necessary here.
A. Polleres 2008-01-09 39 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Our Implementation: HEX-Programs

I We again translate (possibly nested and cross-referencing) SPARQL
queries to Logic Programs with external atoms (HEX-atoms)

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:2

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

2Note: Generally, HEX-programms also allow disjunctive rules, but not necessary here.
A. Polleres 2008-01-09 39 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Our Implementation: HEX-Programs

I We again translate (possibly nested and cross-referencing) SPARQL
queries to Logic Programs with external atoms (HEX-atoms)

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:2

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

2Note: Generally, HEX-programms also allow disjunctive rules, but not necessary here.
A. Polleres 2008-01-09 39 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Our Implementation: HEX-Programs

I We again translate (possibly nested and cross-referencing) SPARQL
queries to Logic Programs with external atoms (HEX-atoms)

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:2

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

2Note: Generally, HEX-programms also allow disjunctive rules, but not necessary here.
A. Polleres 2008-01-09 39 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

SPARQL-specific external Atoms:

For the additional features, we need more than just the rdf atom from before:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres 2008-01-09 40 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Query:

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P a :Publ. ?P dc:author ?N.

FILTER(?N != "Axel Polleres") }

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

answer(N,P) :- triple(P,"rdf:type",":Publ"),
triple(P,"dc:author",N),
N != "Axel Polleres".

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

answer(N,P) :- triple(P,"rdf:type",":Publ"),
triple(P,"dc:author",N),
N != "Axel Polleres".

triple_result(":me","foaf:knows",Blank_P) :-
answer(N,P), &SK["#genid_P",N,P](Blank_P).

triple_result(Blank_P,"foaf:name",N) :-
answer(N,P), &SK["#genid_P",N,P](Blank_P).

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Result:

triple_result(":me","foaf:knows","#genid_P(’Francois Scharffe’,:p1)")
triple_result("#genid_P(’Francois Scharffe’,:p1)","foaf:name","Francois Scharffe")
triple_result(":me","foaf:knows","#genid_P(’Roman Schindlauer’,:p1)")
triple_result("#genid_P(’Roman Schindlauer’,:p1)","foaf:name","Roman Schindlauer")

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Result:

triple_result(":me","foaf:knows","#genid_P(’Francois Scharffe’,:p1)")
triple_result("#genid_P(’Francois Scharffe’,:p1)","foaf:name","Francois Scharffe")
triple_result(":me","foaf:knows","#genid_P(’Roman Schindlauer’,:p1)")
triple_result("#genid_P(’Roman Schindlauer’,:p1)","foaf:name","Roman Schindlauer")

Can in turn be translated back to RDF Triples:

:me foaf:knows _:b1.
_:b1 foaf:name "Francois Scharffe".
:me foaf:knows _:b2.
_:b2 foaf:name "Roman Schindlauer".

A. Polleres 2008-01-09 41 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

aux predicate used for for projection; result of automatic translation.

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

aux predicate used for for projection; result of automatic translation.

Find more details on the translation in the paper.

A. Polleres 2008-01-09 42 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres 2008-01-09 43 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres 2008-01-09 43 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up Mapping by SPARQL Examples Implementation Translation RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres 2008-01-09 43 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Outline

From SPARQL to LP
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL and Negation as failure

Full SPARQL-Spec compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs

SPARQL++ for Ontology alignment
Mapping by SPARQL
Examples
Implementation
Example Translation
RDFS

Wrap-up
A. Polleres 2008-01-09 44 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Summary

Take-home message:
I SPARQL can be translated to Logic Programs.

I Application ontology mappings: Current standards don’t provide the right
“ingredients” to describe the necessary mappings

I extended version of SPARQL, SPARQL++, fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked
Graphs” [Schenk and Staab, 2007]3

Find more details in [Polleres et al., 2007]:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

3diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres 2008-01-09 45 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres 2008-01-09 46 / 47

From SPARQL to LP Spec compliance Ontology alignment Wrap-up

References I

Eiter, T., Ianni, G., Polleres, A., and Schindlauer, R. (2006).

Answer set programming for the semantic web.
Tutorial at the European Semantic Web Conference (ESWC), see http://asptut.gibbi.com/.

Pérez, J., Arenas, M., and Gutierrez, C. (2006).

Semantics and complexity of sparql.
Technical Report DB/0605124, arXiv:cs.

Polleres, A. (2007).

From SPARQL to rules (and back).
In Proceedings of the 16th World Wide Web Conference (WWW2007), Banff, Canada.
Extended technical report version available at http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

Polleres, A., Scharffe, F., and Schindlauer, R. (2007).

SPARQL++ for mapping between RDF vocabularies.
In OTM 2007, Part I : Proceedings of the 6th International Conference on Ontologies, DataBases, and Applications of Semantics
(ODBASE 2007), volume 4803 of Lecture Notes in Computer Science, pages 878–896, Vilamoura, Algarve, Portugal. Springer.

Schenk, S. and Staab, S. (2007).

Networked rdf graph networked rdf graphs.
Technical Report 3/2007, Universsity of Koblenz.
available at http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf.

A. Polleres 2008-01-09 47 / 47

http://asptut.gibbi.com/
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

	From SPARQL to LP
	Basic Graph Patterns
	GRAPH Patterns
	FILTERs
	UNION Patterns
	OPTIONAL and Negation as failure

	Full SPARQL-Spec compliance
	ORDER BY, LIMIT, OFFSET
	Multi-set semantics
	FILTERs in OPTIONALs

	SPARQL++ for Ontology alignment
	Mapping by SPARQL
	Examples
	Implementation
	Example Translation
	RDFS

	Wrap-up

