



**Axel Polleres** 

web: http://polleres.net

twitter: @AxelPolleres

# What is Open Data?



**Availability and Access**: the data must be available as a whole and at no more than a reasonable reproduction cost, preferably by down-loading over the internet, [...] in a convenient and modifiable form.

**Reuse and Redistribution**: the data must be provided under terms that permit reuse and redistribution including the *intermixing with other datasets*. The data must be <u>machine-readable</u>

**Universal Participation**: everyone must be able to use, reuse and redistribute – [...] no discrimination against fields of endeavour, persons or groups. For example, no `non-commercial' [...]restrictions.

See more at: <a href="http://opendefinition.org/okd/">http://opendefinition.org/okd/</a>





# **Open Data is a global trend:**

Cities, International Organizations, National and European **portals**, etc.:



# **Buzzword Bingo 1/3: Open Data vs. Big Data**



http://www.opendatanow.com/2013/11/new-big-data-vs-open-data-mapping-it-out/



# **Buzzword Bingo 2/3:** Open Data vs. Big Data





# Volume:

 It's growing! (we currently monitor 90 CKAN portals, 512543 resources/ 160069 datasets, at the moment (statically) ~1TB only CSV files...





### Variety:

- different datasets (from different cities, countries, etc.), only partially comparable, partially not.
- Different metadata to describe datasets
- Different data formats
- Velocity:
  - Open Data changes regularly (fast and slow)
  - New datasets appear, old ones disappear



# **Buzzword Bingo 3/3: Open Data vs. Linked Data**

WIRTSCHAF UNIVERSITÄ WIEN VIENM UNIVERSITY ECONOMICI AND BUSINI



# Now: Can ontological reasoning help me to integrate Open Data?



short answer: yes, but ... long answer: no, but ...

# In more detail:

- Is Open Data useful at all?
- Are ontology languages expressive enough?
- Which ontologies could I use?
- Is there enough data at all?
- How to tackle inconsistencies?
- Where to find the right data?



# Is Open Data useful at all? Beyond "single dataset Apps"...





Great stuff, but limited potential...

# Is Open Data useful at all? A concrete use case:

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

European Green City Index | The results

| The                | res                      | U                                                                                                                                                                                                                                                                                                                                                         | lts                       |                      |                           |               | 30                     | đ                    | 1   |                        | T                    | -    | -                        |               |                            | T                    | S.                       | -                    | ~        | 2                     |                |
|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|---------------------------|---------------|------------------------|----------------------|-----|------------------------|----------------------|------|--------------------------|---------------|----------------------------|----------------------|--------------------------|----------------------|----------|-----------------------|----------------|
|                    |                          |                                                                                                                                                                                                                                                                                                                                                           |                           |                      |                           |               |                        | "                    |     | 2                      |                      | Ż    | J.                       |               |                            |                      |                          |                      |          |                       |                |
|                    |                          |                                                                                                                                                                                                                                                                                                                                                           |                           |                      |                           |               |                        |                      |     |                        |                      |      |                          |               |                            |                      |                          |                      |          | H                     |                |
|                    | Overall                  | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100<br>- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100<br>- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 | CO <sub>2</sub>           |                      | Energy                    |               | Buildings              | 3                    |     | Transpo                | rt                   | W    | ater                     | 1             | Waste and<br>land use      | d                    | Air quali                | ty I                 | E1<br>gr | nvironm<br>overnan    | iental<br>.ce  |
|                    | City<br>1 Copenhagen     | Score<br>87,31                                                                                                                                                                                                                                                                                                                                            | City<br>1 Oslo            | <b>Score</b><br>9,58 | City<br>1 Oslo            | Score<br>8,71 | City<br>-1 Berlin      | <b>Score</b><br>9,44 | -   | City<br>Stockholm      | <b>Score</b><br>8,81 | 1 /  | <b>City</b><br>Amsterdam | Score<br>9,21 | City<br>1 Amsterdam        | <b>Score</b><br>8,98 | City<br>1 Vilnius        | <b>Score</b><br>9,37 | -1       | City<br>Brussels      | Score<br>10,00 |
|                    | 2 Stockholm              | 86,65                                                                                                                                                                                                                                                                                                                                                     | 2 Stockholm               | 8,99                 | 2 Copenhagen              | 8,69          | =1 Stockholm           | 9,44                 | 2   | Amsterdam              | 8,44                 | 2    | Vienna                   | 9,13          | 2 Zurich                   | 8,82                 | 2 Stockholm              | 9,35                 | -1       | Copenhagen            | 10,00          |
|                    | 3 Oslo<br>4 Vienna       | 83,98                                                                                                                                                                                                                                                                                                                                                     | 3 Zurich<br>4 Copenhagen  | 8,48                 | 3 Vienna<br>4 Stockholm   | 7,76          | 3 Oslo<br>4 Copenhagen | 9,22                 |     | Copenhagen<br>Vienna   | 8,29                 | 3    | Berlin<br>Brussels       | 9,12          | 3 Helsinki<br>4 Berlin     | 8,69                 | 3 Helsinki<br>4 Dublin   | 8,84                 | -1       | Helsinki<br>Stockholm | 10,00          |
|                    | 5 Amsterdam              | 83,03                                                                                                                                                                                                                                                                                                                                                     | 5 Brussels                | 8,32                 | 5 Amsterdam               | 7,08          | 5 Helsinki             | 9,11                 | 5   | o Oslo                 | 7,92                 | -5 ( | Copenhagen               | 8,88          | 5 Vienna                   | 8,60                 | 5 Copenhagen             | 8,43                 | -5       | Oslo                  | 9,67           |
| The second late    | 6 Zurich                 | 82,31                                                                                                                                                                                                                                                                                                                                                     | 6 Paris                   | 7,81                 | 6 Zurich                  | 6,92          | 6 Amsterdam            | 9,01                 | - 6 | 5 Zurich               | 7,83                 | -5   | Zurich                   | 8,88          | 6 Oslo                     | 8,23                 | 6 Tallinn                | 8,30                 | -5       | Warsaw                | 9,67           |
| The complete       | 7 Helsinki               | 79,29                                                                                                                                                                                                                                                                                                                                                     | 7 Rome                    | 7,57                 | 7 Rome                    | 6,40          | 7 Paris                | 8,96                 | 7   | Brussels               | 7,49                 | 7 1  | Madrid                   | 8,59          | 7 Copenhagen               | 8,05                 | 7 Riga                   | 8,28                 | -7       | Paris                 | 9,44           |
| results from the   | 9 Brussels               | 79,01                                                                                                                                                                                                                                                                                                                                                     | 8 Vienna<br>9 Madrid      | 7,53                 | 8 Brussels<br>9 Lisbon    | 6,19          | 8 Vienna<br>9 Zurich   | 8,62                 | 2   | Bratislava<br>Helsinki | 7,16                 | 9    | London<br>Paris          | 8,58          | 9 Vilnius                  | 7,99                 | 9 Zurich                 | 7,86                 | =/       | Vienna<br>Berlin      | 9,44           |
|                    | 10 Paris                 | 73,21                                                                                                                                                                                                                                                                                                                                                     | 10 London                 | 7,34                 | 10 London                 | 5,64          | 10 London              | 7,96                 | -10 | ) Budapest             | 6,64                 | 10   | Prague                   | 8,39          | 10 Brussels                | 7,26                 | 10 Vienna                | 7,59                 | 10       | Amsterdam             | 9,11           |
| index, including   | 11 London                | 71,56                                                                                                                                                                                                                                                                                                                                                     | 11 Helsinki               | 7,30                 | 11 Istanbul               | 5,55          | 11 Lisbon              | 7,34                 | -10 | ) Tallinn              | 6,64                 | 11   | Helsinki                 | 7,92          | 11 London                  | 7,16                 | 11 Amsterdam             | 7,48                 | 11       | Zurich                | 8,78           |
| the overall result | 12 Madrid                | 67,08                                                                                                                                                                                                                                                                                                                                                     | 12 Amsterdam              | 7,10                 | 12 Madrid                 | 5,52          | 12 Brussels            | 7,14                 | 12  | 2 Berlin               | 6,60                 | 12   | Tallinn                  | 7,90          | 12 Paris                   | 6,72                 | 12 London                | 7,34                 | 12       | Lisbon                | 8,22           |
| the overall result | 13 Viinius<br>14 Rome    | 62,77                                                                                                                                                                                                                                                                                                                                                     | 13 berlin<br>14 Liubliana | 6,75                 | 13 Denim<br>14 Warsaw     | 5,46          | 13 Villius<br>14 Sofia | 6.25                 | 12  | l Rina                 | 6.16                 | 14   | viinius<br>Rratislava    | 7,71          | 14 Praque                  | 6,30                 | 13 Paris<br>14 Liubliana | 7,14                 | =13      | Madrid                | 8,00           |
| of each city as    | 15 Riga                  | 59,57                                                                                                                                                                                                                                                                                                                                                     | 15 Riga                   | 5,55                 | 15 Athens                 | 4,94          | 15 Rome                | 6,16                 | 15  | 5 Madrid               | 6,01                 | 15 / | Athens                   | 7,26          | 15 Budapest                | 6,27                 | 15 Oslo                  | 7,00                 | -15      | Ljubljana             | 7,67           |
| المعالم مطلم مطا   | 16 Warsaw                | 59,04                                                                                                                                                                                                                                                                                                                                                     | 16 Istanbul               | 4,86                 | 16 Paris                  | 4,66          | 16 Warsaw              | 5,99                 | 16  | 5 London               | 5,55                 | -16  | Dublin                   | 7,14          | 16 Tallinn                 | 6,15                 | 16 Brussels              | 6,95                 | -15      | London                | 7,67           |
| well as the Indi-  | 17 Budapest              | 57,55                                                                                                                                                                                                                                                                                                                                                     | =17 Athens                | 4,85                 | 17 Belgrade               | 4,65          | 17 Madrid              | 5,68                 | 17  | Athens                 | 5,48                 | -16  | Stockholm                | 7,14          | 17 Rome                    | 5,96                 | 17 Rome                  | 6,56                 | 17       | Vilnius               | 7,33           |
| vidual rankinas    | 18 Lisbon                | 57,25                                                                                                                                                                                                                                                                                                                                                     | =17 Budapest              | 4,85                 | 18 Dublin<br>19 Hokinki   | 4,55          | 18 Riga                | 5,43                 | 18  | 8 Rome                 | 5,31                 | 18   | Budapest                 | 6,97          | 18 Ljubljana               | 5,95                 | 18 Madrid                | 6,52                 | 18       | Tallinn               | 7,22           |
| nadarrannings      | 20 Bratislava            | 56.09                                                                                                                                                                                                                                                                                                                                                     | 20 Warsaw                 | 4,77                 | 20 Zagreb                 | 4,49          | 20 Budapest            | 5,20                 | -19 | Paris                  | 5,29                 | 20   | Oslo                     | 6.85          | 20 Rina                    | 5,85                 | 20 Praque                | 6.37                 | 20       | Rratislava            | 6,30           |
| within the eight   | 21 Dublin                | 53,98                                                                                                                                                                                                                                                                                                                                                     | 21 Bratislava             | 4,54                 | 21 Bratislava             | 4,19          | 21 Bucharest           | 4,79                 | -19 | Vilnius                | 5,29                 | 21   | Riga                     | 6,43          | 21 Bratislava              | 5,60                 | 21 Bratislava            | 5,96                 | -21      | Athens                | 5,44           |
| -                  | 22 Athens                | 53,09                                                                                                                                                                                                                                                                                                                                                     | 22 Lisbon                 | 4,05                 | 22 Riga                   | 3,53          | 22 Athens              | 4,36                 | -19 | Zagreb                 | 5,29                 | 22   | Kiev                     | 5,96          | 22 Lisbon                  | 5,34                 | 22 Budapest              | 5,85                 | -21      | Dublin                | 5,44           |
| categories.        | 23 Tallinn               | 52,98                                                                                                                                                                                                                                                                                                                                                     | 23 Vilnius                | 3,91                 | 23 Bucharest              | 3,42          | 23 Bratislava          | 3,54                 | 23  | 8 Istanbul             | 5,12                 | 23   | Istanbul                 | 5,59          | 23 Athens                  | 5,33                 | 23 Istanbul              | 5,56                 | -23      | Kiev                  | 5,22           |
|                    | 24 Prague                | 49,78                                                                                                                                                                                                                                                                                                                                                     | 24 Bucharest              | 3,65                 | 24 Prague                 | 3,26          | 24 Dublin              | 3,39                 | 24  | Warsaw                 | 5,11                 | 24   | Lisbon                   | 5,42          | 24 Warsaw                  | 5,17                 | 24 Lisbon                | 4,93                 | -23      | Rome                  | 5,22           |
|                    | 25 Istanbul<br>26 Zagreb | 45,20                                                                                                                                                                                                                                                                                                                                                     | 25 Prague                 | 3,44                 | 25 Budapest<br>26 Vilnius | 2,43          | 25 Zagreb<br>26 Praque | 3,29                 | 25  | Praque                 | 4,73                 | 25   | warsaw<br>Zaoreh         | 4,90          | 25 Istanbul<br>26 Belgrade | 4,80                 | 25 Athens<br>26 Zagreb   | 4,82                 | 25       | Zagreb                | 4,67           |
|                    | 27 Belgrade              | 40,03                                                                                                                                                                                                                                                                                                                                                     | 27 Zagreb                 | 3,20                 | 27 Ljubljana              | 2,23          | 27 Belgrade            | 2,89                 | 27  | Sofia                  | 4,62                 | 27   | Ljubljana                | 4,19          | 27 Zagreb                  | 4,04                 | 27 Bucharest             | 4,54                 | 27       | Prague                | 4,22           |
|                    | 28 Bucharest             | 39,14                                                                                                                                                                                                                                                                                                                                                     | 28 Belgrade               | 3,15                 | 28 Sofia                  | 2,16          | 28 Istanbul            | 1,51                 | 28  | Bucharest              | 4,55                 | 28   | Bucharest                | 4,07          | 28 Bucharest               | 3,62                 | 28 Belgrade              | 4,48                 | 28       | Sofia                 | 3,89           |
|                    | 29 Sofia                 | 36,85                                                                                                                                                                                                                                                                                                                                                     | 29 Sofia                  | 2,95                 | 29 Tallinn                | 1,70          | 29 Tallinn             | 1,06                 | 29  | Belgrade               | 3,98                 | 29   | Belgrade                 | 3,90          | 29 Sofia                   | 3,32                 | 29 Sofia                 | 4,45                 | 29       | Istanbul              | 3,11           |
|                    | 30 Kiev                  | 32,33                                                                                                                                                                                                                                                                                                                                                     | 30 Kiev                   | 2,49                 | 30 Kiev                   | 1,50          | 30 Kiev                | 0,00                 | 30  | Dublin                 | 2,89                 | 30 ! | Sofia                    | 1,83          | 30 Kiev                    | 1,43                 | 30 Kiev                  | 3,97                 | 30       | Bucharest             | 2,67           |



Idea – a "classic" Semantic **Web** use case!

- Regularly integrate various relevant Open Data sources (e.g. eurostat, UNData, ...)
- Make integrated data available for re-use

### (How) can ontologies help me?

- Are ontology languages expressive enough?
- Which ontologies could I (re-)use?
- Is there enough data at all?
- Where to find the right data?
- How to tackle inconsistencies?



> Home > Innovationen > Innovation Stories > Daten-Pipeline für Stadtdaten

#### Nachhaltigere Städte durch Offene Daten

Siemens baut eine Daten-Pipeline für Stadtdaten. Welche Faktoren bestimmen die Nachhaltigkeit von Städten? Wie verändern sich diese im Laufe der Zeit? Will man Herausforderungen wie Klimawandel, demographischen Veränderungen oder Urbanisierung gewachsen sein, braucht man Antworten auf diese Fragen.

Ähnlich einer Web-Suchmaschine Pipeline öffentliche Stadtdaten vor Wikipedia und Webportalen. Ca. 2 mehr als 300 Städten sind derzeit laufend aktualisiert und erweitert.

















### City Data Model: extensible Indicators, $ALH(\mathbf{D})$ ontology: e.g. area in km2, tons CO2/capita dbpedia:areakm 🗔 :area Provenance Datatype Category eurostat:area 🗀 :area Indicator Value Unit Ok, we only need role hierarchies here? Are we taContext done? spatialContext Tem ontext Country District City Temporal information Spatial context





### **RDFS** with Attribute Equations via SPARQL Rewriting

Stefan Bischof<sup>1,2</sup> and Axel Polleres<sup>1</sup>

<sup>1</sup> Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
 <sup>2</sup> Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria

Abstract. In addition to taxonomic knowledge about concepts and properties typically expressible in languages such as RDFS and OWL, implicit information in an RDF graph may be likewise determined by arithmetic equations. The main use case here is exploiting knowledge about functional dependencies among numerical attributes expressible by means of such equations. While some of this knowledge can be encoded in rule extensions to ontology languages, we provide an arguably more flexible framework that treats attribute equations as first class citizens in the ontology language. The combination of ontological reasoning and attribute equations is realized by extending query rewriting techniques already successfully applied for ontology languages such as (the DL-Lite-fragment of) RDFS or OWL, respectively. We deploy this technique for rewriting SPARQL queries and discuss the feasibility of alternative implementations, such as rule-based approaches.

### 1 Introduction

A wide range of literature has discussed completion of data represented in RDF with implicit information through ontologies, mainly through taxonomic reasoning within a biararchy of concerns (classes) and rales (properties) using RDFS and OWL. However, a

Stefan Bischof, Axel Polleres. ESWC2013

Can equational knowledge co-exist with OWL?

We need a syntax & define a formal semantics

Syntax:

:populationDensity = :population/:area :area = 0,386102 \* dbpedia:areaMi2

```
:populationDensity :defineByEquation "population/:area" .
:area :defineByEquation "areaMi2 * 0,386102 " .
dbPedia:populationTotal :rdfs:subPropertyOf :population.
```

### Semantics:

- Requirements:
  - "Fit" with common model-theoretic semantics for OWL and RDFS
  - Treat equivalent equations equivalently:

:area = 0,386102 \* dbpedia:areaMi2

:areaMi2 = 2,589988 \* :area



- An interpretation  $\mathcal{I}$  is a model it satisfies
  - all inclusion axioms
  - all variants of all equation axioms

- An Interpretation  $\mathcal{I}$  interpret datatype properties U as binary relations between domain elements and Data-Values (for our simple equations rational numbers are sufficient):  $U^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \mathbb{Q}$
- Interpretations of inclusion axioms are as usual, e.g.
  - A sub-property axiom **sp**

 $\begin{array}{c} U_1 \text{ rdfs:subPropertyOf } U_2 \\ \text{is satisfied in } \mathcal{I} \text{ if } U_1^{\mathcal{I}} \subseteq U_2^{\mathcal{I}} \end{array} \quad U_1 \sqsubseteq U_2 \\ \end{array}$ 

:populationDensity :definedByEquation ":population / :area" .

NEW: A property equation axiom e<sup>4</sup>

 $U_0$  :defineByEquation " $f(U1, ..., U_n)$ ".

n

dbr:Athens :population 664046. dbr:Athens :area 0.

if 
$$\forall x, y_1, \dots, y_n (\bigwedge_{i=1}^n (x, y_i) \in U_i^{\mathcal{I}}) \land \operatorname{defined}(f(U_1/y_1, \dots, U_n/y_n))$$

:population :definedByEquation ":populationDensity \* :area". :area:definedByEquation ":population / :populationDensity".

- An interpretation *I* is a model if it satisfies
  - all inclusion axioms

is satisfied in  $\mathcal{T}$ 

all variants of all equation axioms

# Can materialization and/or query rewriting be used?

Rule-based Materialization:

 $\begin{array}{ll} (S, \mathsf{popDensity}, PD) \leftarrow & (S, \mathsf{population}, P), (S, \mathsf{area}, A), \ PD := P/A, \ A \neq 0. \\ (S, \mathsf{area}, PD) & \leftarrow & (S, \mathsf{population}, P), (S, \mathsf{popDensity}, PD), \ A := P/PD, PD \neq 0. \\ (S, \mathsf{population}, P) & \leftarrow & (S, \mathsf{area}, A), (S, \mathsf{popDensity}, PD), \ P := A * PD. \end{array}$ 

dbr:Athens dbo:population **2**. dbr:Athens dbo:area **3**.

dbr:Athens dbo:popDensity 0.666666666.

dbr:Athens dbo:area 3.0000000003.

dbr:Athens dbo:population 1.9999998002.

... potentially infinite values by rounding errors.

Similarly, for ambiguous values (assume 2 population values for Athens)

# Can materialization and/or query rewriting be used?

Rewriting? Again consider clausal form of all variants of equations:

 $\begin{array}{l} (S, \mathsf{popDensity}, PD) \leftarrow (S, \mathsf{population}, P), (S, \mathsf{area}, A), \ PD := P/A \\ (S, \mathsf{area}, PD) \ \leftarrow (S, \mathsf{population}, P), (S, \mathsf{popDensity}, PD), \ A := P/PD \\ (S, \mathsf{population}, P) \ \leftarrow \ (S, \mathsf{area}, A), (S, \mathsf{popDensity}, PD), \ P := A * PD \end{array}$ 



# **Algorithm:**

"Down-stripped" version of PerfectRef [Calvanese, 2007] which handles equations by keeping "adornments" of attributes during rewriting:



# Can materialization and/or query rewriting be used?

Rule-based Materialization:

 $\begin{array}{ll} (S, \mathsf{popDensity}, PD) \leftarrow & (S, \mathsf{population}, P), (S, \mathsf{area}, A), \ PD := P/A, \ A \neq 0. \\ (S, \mathsf{area}, PD) & \leftarrow & (S, \mathsf{population}, P), (S, \mathsf{popDensity}, PD), \ A := P/PD, PD \neq 0. \\ (S, \mathsf{population}, P) & \leftarrow & (S, \mathsf{area}, A), (S, \mathsf{popDensity}, PD), \ P := A * PD. \end{array}$ 

dbr:Athens dbo:population 2. dbr:Athens dbo:area 3.

Similar blocking possible in some rule systems, e.g. Jena Rules:

```
[ (?C :area ?A) (?C :population ?P)
notEqual(?A, 0) quotient(?P, ?A, ?PD)
noValue(?C, :populationDensity) -> (?C :populationDensity ?D)]
[ (?C :populationDensity ?PD) (?city :population ?P)
notEqual(?PD, 0) quotient(?P, ?PD, ?A)
noValue(?C, :area) -> (?city :area ?A)]
[ (?C :area ?A) (?C :populationDensity ?P) product(?A, ?PD, ?P)
noValue(?city, :population) -> (?city :population ?P)]
```

Side remark: Experiments in our ESWC2013 paper favor rewriting approach.



### City Data Model: extensible $ALH(\mathbf{D})$ ontology:



# In more detail:

City

- Is Open Data useful at all?
- Are ontology languages expressive enough?
- Which ontologies could I use?
- Is there enough data at all?
- How to tackle inconsistencies?
- Where to find the right data?

# Equational knowledge:



# Eurostat/Urbanaudit:

<u>http://ec.europa.eu/regional\_policy/archive/urban2/urban/audit/ftp/vol3.pdf</u>

| Domain | N° | Variables                                              | Indicator Name                                       | Presentation of Indicator |   |   | Calculations required |  |     |                                                          |
|--------|----|--------------------------------------------------------|------------------------------------------------------|---------------------------|---|---|-----------------------|--|-----|----------------------------------------------------------|
|        |    |                                                        |                                                      | YB<br>Sum                 |   |   |                       |  |     |                                                          |
|        |    |                                                        |                                                      |                           |   |   |                       |  | 002 |                                                          |
| Crime  | 8  | Total number of recorded crimes within city (per year) | Total recorded crimes (per 1000 population per year) | X                         | х | X | X                     |  | X   | (Total crimes recorded x 1000)/Total resident population |



# Equational knowledge: Unit conversion



### http://qudt.org/

# QUDT

### QUDT - Quantities, Units, Dimensions and Data Types Ontologies

### March 18, 2014

Authors:

Ralph Hodgson, TopQuadrant, Inc. Paul J. Keller, NASA AMES Research Center Jack Hodges Jack Spivak

### Overview

The QUDT Ontologies, and derived XML Vocabularies, are being developed by <u>TopQuadrant</u> and <u>NASA</u>. Originally, they were developed for the NASA Exploration Initiatives Ontology Models (NExIOM) project, a Constellation Program initiative at the AMES Research Center (ARC). They now for the basis of the NASA QUDT Handbook to be published by NASA Headquarters.

### http://www.wurvoc.org/vocabularies/om-1.8/









City Data Model: extensible  $ALH(\mathbf{D})$  ontology:

:avgIncome per country is the population-weighted average income of all its provinces.

TemporalCon

**11OT** 

But Eurostat data is incomplete... I don't have the avg. income for all provinces or countries in the EU!

Spatial context

In more detail:

- Is Open Data useful at all?
- Are ontology languages expressive enough?
- Which ontologies could I use?
- Is there enough data at all?
- How to tackle inconsistencies?
- Where to find the right data?

Hmmm...



### **Challenge – Missing values**



- Found a huge amount of missing values
- Two Reasons:

(later)

- Incomplete data published by providers (Tables 1+2)
- The combination of different data sets with disjoint cities and indicators

| Year(s)           | Cities | Indicators | Filled  | Missing   | % of Missing |
|-------------------|--------|------------|---------|-----------|--------------|
| 1990              | 177    | 121        | 2 480   | 18 937    | 88.4         |
| 2000              | 477    | 156        | 10 347  | 64 065    | 85.0         |
| 2005              | 651    | 167        | 23 494  | 85 223    | 78.4         |
| 2010              | 905    | 202        | 90 490  | 92 320    | 50.5         |
| 2004 - 2012       | 943    | 215        | 531 146 | 1 293 559 | 70.9         |
| All (1990 - 2012) | 943    | 215        | 638 934 | 4 024 201 | 86.3         |

Table 1. Urban Audit Data Set

| Table 2: United Nations Data S | et |
|--------------------------------|----|
|--------------------------------|----|

| Year(s)                          | Cities         | Indicators | Filled           | Missing                 | % of Missing |
|----------------------------------|----------------|------------|------------------|-------------------------|--------------|
| 1990                             | 7              | 3          | 10               | 11                      | 52.4         |
| 2000                             | 1 391          | 147        | 7 492            | 196 985                 | 96.3         |
| 2005                             | 1 048          | 142        | 3 654            | 145 162                 | 97.5         |
| 2010                             | 2 008          | 151        | 10 681           | 292 527                 | 96.5         |
| 2004 - 2012<br>All (1990 - 2012) | 2 733<br>4 319 | 154<br>154 | 44 944<br>69 772 | 3 322 112<br>14 563 000 | 98.7<br>99.5 |



### **Challenges – Missing values**



- Individual datasets (e.g. from Eurostat) have missing values
- Merging together datasets with different indicators/cities adds sparsity

Data from Source 1

|                    | Vienna  | Augsburg | Valletta |
|--------------------|---------|----------|----------|
| Cars               | 655806  | 111561   | 95858    |
| Nationals          | 1342704 | 216289   | 203657   |
| Women per 1000 Men | 109.8   | 108.7    | 101.9    |

Data from Source 2

|                         | Marbella | Stockholm | Funchal |
|-------------------------|----------|-----------|---------|
| Available Beds per 1000 | 138.3    | 14969     | 166.1   |
| Average area of living  | 36.42    | 37.24     | 38.16   |
| Cinema Seats            | 4691     | 12751     | 2676    |





### Combined data from Source 1 and Source 2

|                         | Vienna  | Augsburg | Valletta | Marbella | $\mathbf{Stockholm}$ | Funchal |
|-------------------------|---------|----------|----------|----------|----------------------|---------|
| Cars                    | 655806  | 111561   | 95858    |          |                      |         |
| Nationals               | 1342704 | 216289   | 203657   |          |                      |         |
| Women per 1000 Men      | 109.8   | 108.7    | 101.9    |          |                      |         |
| Available Beds per 1000 |         |          |          | 138.3    | 14969                | 166.1   |
| Average area of living  |         |          |          | 36.42    | 37.24                | 38.16   |
| Cinema Seats            |         |          |          | 4691     | 12751                | 2676    |

# Missing Values – Hybrid approach choose best prediction method per indicator:

- Our assumption: every indicator has its own distribution and relationship to others.
- Basket of "standard" regression methods:
  - K-Nearest Neighbour Regression (KNN)
  - Multiple Linear Regression (MLR)
  - Random Forest Decision Trees (RFD)





# Missing Values – Hybrid approach choose best prediction method per indicator:

Instead of using indicators directly we use Principle Components, built from the indicators
For builting the PCs, fill in missing data points with neutral values → predict all rows





NIVEDCITÄ

ATEN VIENNIA

Sustainable Cities Results

Mttp://citydata.ai.wu.ac.at/KPIDataPipeline/KPIDispatcher

▽ ℃ ☆ 自 、

# **City Data Pipeline**



# SIEMENS

### citydata.wu.ac.at

- Search for indicators & cities
- obtain results incl. sources
- Integrated data served as Linked Data
- Predicted values AND estimated error (RMSE) for missing data...



# SIEMENS

### Berlin

Population male 2012 1717645.0 persons (Source: http://epp.eurostat.ec.europa.eu/) Population male 2011 1695438.0 persons (Source: http://data.un.org/) Population male 2011 1695438.0 persons (Source: http://epp.eurostat.ec.europa.eu/) Population male 2010 1686256.0 persons (Source: http://epp.eurostat.ec.europa.eu/) Population male 2009 1686256.0 persons

#### Vienna

Population male 2011 821605.0 persons (Source: http://data.un.org/) Population male 2010 812867.0 persons (Source: http://data.un.org/) Population male 2009 807088.0 persons (Source: http://data.un.org/) Population male 2009 807088.0 persons (Source: http://epp.eurostat.ec.europa.eu/) Population male 2008 801776.0 persons (Source: http://data.un.org/) Population male 2008 800361.0 persons

# ...assumption: Predictions get better, the more Open data we integrate...



### Vienna 🝕

### Municipal waste (1000 t)

- > 2004: 778.905392176222 1000 t (from <u>http://citydata.wu.ac.at</u> /ns#Prediction, predicted by with an estimated error of %RMSE)
- > 2005: 813.77643147163 1000 t (from <u>http://citydata.wu.ac.at</u> /ns#Prediction, predicted by with an estimated error of %RMSE)
- > 2006: 813.889824195497 1000 t (from <u>http://citydata.wu.ac.at</u> /ns#Prediction, predicted by with an estimated error of %RMSE)
- > 2007: 811.538914636665 1000 t (from <u>http://citydata.wu.ac.at</u> /ns#Prediction, predicted by with an estimated error of %RMSE)
- > 2008: 811.010344391444 1000 t (from <u>http://citydata.wu.ac.at</u> /ns#Prediction, predicted by with an estimated error of %RMSE)

2009: 811.172539879368 1000 t (from http://citvdata.wu.ac.at

# **More Details:**



Stefan Bischof, Christoph Martin, Axel Polleres, and Patrik Schneider. Open City Data Pipeline: Collecting, Integrating, and Predicting Open City Data. In 4th Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD), co-located with ESWC2015, Portoroz, Slovenia, May 2015.





# Lesson(s) learnt?



- Time series analysis is necessary
- Open Data is incomparable
- Still not great coverage of all available sources
- Open Data Quality is an issue
- Still unanswered:



- Is Open Data useful at all?
- Are ontology languages expressive enough?
- Is there enough data at all?
- Which ontologies could I use?
- How to tackle inconsistencies?
- Where to find the right data?



Hmmm, still, lots of open challenges!

# Time series analysis is necessary

- Predictions on time series are partially very bad at the moment:
- Most of the data we look at is time series data/data chaning over time.

● ● ● < > | Ξ Ċ citvdata.wu.ac.at ſĥ SIEMENS INIVERSITÄT UNIVERSITY O ECONOMICS AND BUSINESS Aachen 🝕 Population 1999: 243825 persons (from http://data.un.org/) 2001: 245778 persons (from http://epp.eurostat.ec.europa.eu/) 2002: 247740 persons (from http://epp.eurostat.ec.europa.eu/) 2003: 256605 persons (from http://epp.eurostat.ec.europa.eu/) 2004: 237370.88 persons (from http://citydata.wu.ac.at/ns#Prediction, predicted by multiple linear regression with an estimated error of 0.2008794067 %RMSE) > 2005: 242075.09 persons (from http://citydata.wu.ac.at/ns#Prediction, predicted by multiple linear regression with an estimated error of 0.2008794067 %RMSE) > 2006: 236518.39 persons (from http://citydata.wu.ac.at/ns#Prediction, predicted by multiple linear regression with an estimated error of 0.2008794067 %RMSE) > 2007: 258770 persons (from http://epp.eurostat.ec.europa.eu/) 2008: 259030 persons (from http://epp.eurostat.ec.europa.eu/) 2009: 259269 persons (from http://epp.eurostat.ec.europa.eu/) 2010: 258380 persons (from http://epp.eurostat.ec.europa.eu/)

VIEN VIENNIA

> 2011: 258664 persons (from http://data.un.org/)

# **Open Data is incomparable**



Ĥ

ń

- More surprising maybe, how much obviously weird data you find:
  - Inconsistencies across and within datasets



=

# **SIEMENS**

Ċ

citvdata.wu.ac.at

# London 4

2001: 8278251 persons (from http://data.un.org/) > 2001: 7172091 persons (from http://data.un.org/) > 2003: 457233 persons (from http://data.un.org/) 2004: 459697 persons (from http://data.un.org/) > 2005: 464304 persons (from http://data.un.org/) > 2006: 465720 persons (from <a href="http://data.un.org/">http://data.un.org/</a>) > 2007: 469714 persons (from http://data.un.org/) 2008: 485182 persons (from http://data.un.org/) 2009: 489274 persons (from http://data.un.org/) 2010: 492249 persons (from http://data.un.org/) > 2011: 474785 persons (from http://data.un.org/) 2015: 8173194 persons (from http://dbpedia.org/)

# **Open Data is incomparable**



Ĥ

ń

- More surprising maybe, how much obviously weird data you find:
  - Inconsistencies across and within datasets
  - Still, some datasets match quite well on certain indicators
  - Open: (How) can we exploit this?
  - → Ontology learning!

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Ē

# SIEMENS

Ċ

# Vienna 🝕

**1991**: 1539848 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)

citvdata.wu.ac.at

- 1997: 1609631 persons (from <a href="http://epp.eurostat.ec.europa.eu/">http://epp.eurostat.ec.europa.eu/</a>)
- 1998: 1606843 persons (from <a href="http://epp.eurostat.ec.europa.eu/">http://epp.eurostat.ec.europa.eu/</a>)
- **1999**: 1608144 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)
- 2000: 1615438 persons (from <a href="http://epp.eurostat.ec.europa.eu/">http://epp.eurostat.ec.europa.eu/</a>)
- 2001: 1829876 persons (from <u>http://data.un.org/</u>)
- > 2001: 1550123 persons (from <u>http://data.un.org/</u>)
- 2001: 1550123 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)
- 2004: 1598626 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)
- > 2005: 1626440 persons (from <u>http://data.un.org/</u>)
- > 2005: 1632569 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)
- > 2006: 1651437 persons (from <u>http://data.un.org/</u>)
- > 2006: 1652449 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)
- > 2007: 1664146 persons (from <u>http://data.un.org/</u>)
- > 2007: 1661246 persons (from <u>http://epp.eurostat.ec.europa.eu/</u>)

# Worthwhile related work to look at... Paulheim, 2012 (ESWC), Nickel et al. 2012 (WWW)



### **Generating Possible Interpretations for Statistics** from Linked Open Data

Heiko Paulheim

Technische Universität Darmstadt Knowledge Engineering Group paulheim@ke.tu-darmstadt.de

Abstract. Statistics are very present in our daily lives. Every day, new statistics are published, showing the perceived quality of living in different cities, the corruption index of different countries, and so on. Interpreting those statistics, on the other hand, is a difficult task. Often, statistics collect only very few attributes, and it is difficult to come up with hypotheses that explain, e.g., why the perceived quality of living in one city is higher than in another. In this paper, we introduce Explain-a-LOD, an approach which uses data from Linked Open Data for generating hypotheses that explain statistics. We show an implemented prototype and compare different approaches for generating hypotheses by analyzing the perceived quality of those hypotheses in a user study.

WWW 2012 - Session: Creating and Using Links between Data Objects

April 16-20, 2012, Lyon, France

### Factorizing YAGO

#### Scalable Machine Learning for Linked Data

Maximilian Nickel Ludwig-Maximilians University Munich Oettingenstr. 67 Munich, Germany nickel@dbs.ifi.lmu.de

Volker Tresp Siemens AG Corporate Technology Otto-Hahn Ring 6 Munich, Germany

Hans-Peter Kriegel Ludwig-Maximilians University Munich Oettingenstr. 67 Munich, Germany volker.tresp@siemens.com kriegel@dbs.ifi.lmu.de

#### ABSTRACT

Vast amounts of structured information have been published in the Semantic Web's Linked Open Data (LOD) cloud and their size is still growing rapidly. Yet, access to this information via reasoning and querying is sometimes difficult, due to LOD's size, partial data inconsistencies and inherent noisiness. Machine Learning offers an alternative approach to exploiting LOD's data with the advantages that Machine Learning algorithms are typically robust to both noise and data inconsistencies and are able to efficiently utilize nondeterministic dependencies in the data. From a Machine Learning point of view, LOD is challenging due to its relational nature and its scale. Here, we present an efficient approach to relational learning on LOD data, based on the factorization of a sparse tensor that scales to data consisting of millions of entities, hundreds of relations and billions of known facts. Furthermore, we show how ontological knowledge can be incorporated in the factorization to improve learning results and how computation can be distributed across multiple nodes. We demonstrate that our approach is able to factorize the YAGO 2 core ontology and globally predict statements for this large knowledge base using a single dual-core desktop computer. Furthermore, we show experimentally that our approach achieves good results in several relational learning tasks that are relevant to Linked Data. Once a factorization has been computed, our model is able to predict efficiently, and without any additional training, the likelihood of any of the  $4.3 \cdot 10^{14}$  possible triples in the YAGO 2 core ontology.

#### 1. INTRODUCTION

The Semantic Web's Linked Open Data (LOD) 6 cloud is growing rapidly. At the time of this writing, it consists of around 300 interlinked databases, where some of these databases store billions of facts in form of RDF triples. Thus, for the first time, relational data from heterogeneous, interlinked domains is publicly available in large amounts, which provides exciting opportunities for Machine Learning. In particular, much progress has been made in recent years in the subfield of Relational Machine Learning to learn efficiently from attribute information and information about the entities' relationships in interlinked domains. Some Relational Machine Learning approaches can exploit contextual information that might be more distant in the relational graph, a capability often referred to as collective learning. State-of-the-art collective learning algorithms can therefore be expected to utilize much of the information and patterns that are present in LOD data. Moreover, the Semantic Web itself can benefit from Machine Learning. Traditional Semantic Web approaches such as formal semantics, reasoning or ontology engineering face serious challenges in processing data in the LOD cloud, due to its size, inherent noisiness and inconsistencies. Consider, for example, that owl:sameAs is often misused in the LOD cloud, leading to inconsistencies between different data sources 13. Further examples include malformed datatype literals, undefined classes and properties, misuses of ontological terms 16 or the modeling of a simple fact such as Nancy Pelosi voted in favor of the Health Care Bill using eight RDF triples 15. Partial inconsistencies in the data or noise such as duplicate enti

# Lesson(s) learnt?



Hmmm, still, lots of open

challenges!

- Time Series analysis is necessary
- Open Data is incomparable
- Open Data Quality is an issue
- Still unanswered: Is Open Data useful at all?
  - Are ontology languages expressive enough?
  - Is there enough data at all?
  - Which ontologies could I use?
  - How to tackle inconsistencies?
  - Where to find the right data?





# **Data Quality issues:**



- Missing
- Outdated data
- Wrong data
- Ambiguous Data
- Wrong meta-data
- Data source offline/not reachable



# **Open Data Portals**



CKAN ... <u>http://ckan.org/</u>

- almost "de facto" standard for Open Data Portals
- facilitates search, metadata (publisher, format, publication date, license, etc.) for datasets
- <u>http://datahub.io/</u>
- <u>http://data.gv.at/</u>

machine-processable? ...
 martially



# **OPEN DATA PORTAL WATCH** ... a first step.



### http://data.wu.ac.at/portalwatch/

- Periodically monitoring a list of Open Data Portals
  - 90 CKAN powered Open Data Portals
- Quality assessment
- Evolution tracking
  - Meta data
  - Data

| Open Data Portal Watch                                                                                                                                                                                                                                                                                                          | WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELARE<br>WEFFELA |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Welcome                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Motivation                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The Open Data movement enjoys more and more attention by private and commercial entities over therecent years. Despite<br>by the growing number and diversity of published dataset or apps), there is one crucial factor, namely the quality of the availa<br>sources, that will highly influence its real value in the future. | the current success (e.g., judging ble meta data and of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Open Data Portal Watch                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| With the <b>Open Data Portal Watch</b> project of WU Vienna we monitor and assess the quality of Open Data portals in an autom<br>quantitative insights and reports on this platform.                                                                                                                                           | atic manner and provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| We are currently monitoring the meta data and the data sources of <u>90 CKAN portals</u> and compute <u>various metrics</u> once a were several dimensions and track the <u>evolution</u> over time.                                                                                                                            | ek to assess their quality along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



# **Open Data Portal list**







# **QUALITY DIMENSIONS**



### DIMENSION DESCRIPTION

|  | Usage | The extent to which available meta data keys are used to describe a dataset. |
|--|-------|------------------------------------------------------------------------------|
|--|-------|------------------------------------------------------------------------------|

**Completeness** The extent to which the used meta data keys are non empty.

Accuracy The extent to which certain meta data values accurately describe the resources.

**Openness** The extent to which licenses and file formats conform to the open definition.

**Contactability** The extent to which the data publisher provide contact information.

Objective measures which can be automatically computed in a scalable way



# **Portal Overview**





# **ODP Evolution**



**EQUIS** 



# **ODP CHANGES**



### Changes between the first and last snapshots

#### dataset changes

70 PORTALS WITH DATASET CHANGES

- Avg. increase by 87.05% for 60 portals
- Avg. decrease by -64.16% for 10 portals

#### Show 10 + entries

|                                                        |      |      |        |                    | Search:  |
|--------------------------------------------------------|------|------|--------|--------------------|----------|
| 1 PORTAL                                               | FROM | 1 TO | CHANGE | ↓CHANGE PERCENTAGE |          |
| data.sa.gov.au<br>(2014-07-17)→ (2015-03-15)           | 484  | 5721 | 5237   |                    | 1082.02% |
| datos.codeandomexico.org<br>(2014-07-17)→ (2015-03-15) | 94   | 715  | 621    |                    | 660.64%  |
| data.opendataportal.at<br>(2014-07-17)→ (2015-03-16)   | 46   | 323  | 277    |                    | 602.17%  |
| annuario.comune.fi.it<br>(2014-08-07)→ (2015-03-15)    | 50   | 351  | 301    |                    | 602.00%  |
| udct-data.aigid.jp<br>(2014-08-07)→ (2015-03-16)       | 431  | 2110 | 1679   |                    | 389.56%  |
| catalogo.datos.gob.mx<br>(2014-08-08)→ (2015-03-15)    | 111  | 360  | 249    |                    | 224.32%  |



# **Data Dumps**



# OPEN DATA PORTAL WATCH provides an archive of Open Data portal crawls (weekly snapshots/dynamic crawling framework):

### Open Data Portal Watch Dumps

| Name                    |     | Last modified     | Size |
|-------------------------|-----|-------------------|------|
| Parent Directory        |     |                   | -    |
| africaopendata.org/     |     | 16-Mar-2015 13:03 | -    |
| 📄 annuario.comune.fi.it | -/  | 16-Mar-2015 13:03 | -    |
| 📄 bermuda.io/           |     | 16-Mar-2015 13:14 | -    |
| catalog.data.gov/       |     | 05-Feb-2015 15:28 | -    |
| atalog.data.ug/         |     | 16-Mar-2015 13:07 | -    |
| atalogo.datos.gob.m     | ix/ | 16-Mar-2015 13:08 | -    |
| 📄 catalogodatos.gub.uy  | /   | 16-Mar-2015 13:15 | -    |

### Open Data Portal Watch Dumps

|   | Name             | Last modified     | Size |
|---|------------------|-------------------|------|
|   | Parent Directory |                   | -    |
| 8 | 2014-07-17.gz    | 05-Feb-2015 15:13 | 2.2M |
| 5 | 2014-07-25.gz    | 05-Feb-2015 15:13 | 2.2M |
| 5 | 2014-08-05.gz    | 05-Feb-2015 15:13 | 2.2M |
| 8 | 2014-08-12.gz    | 05-Feb-2015 15:13 | 2.2M |
| 8 | 2014-08-27.gz    | 05-Feb-2015 15:13 | 2.2M |
| 8 | 2014-09-01.gz    | 05-Feb-2015 15:14 | 2.2M |
| 8 | 2014-09-07.gz    | 05-Feb-2015 15:14 | 2.2M |
| 8 | 2014-09-14.gz    | 05-Feb-2015 15:14 | 2.2M |

# **Open Data Portal Watch**



# Towards assessing the quality evolution of Open Data portals

Jürgen Umbrich, Sebastian Neumaier, Axel Polleres Vienna University of Economics and Business, Vienna, Austria

In this work, we present the Open Data Portal Watch project, a public framework to continuously monitor and assess the (meta-)data quality in Open Data portals. We critically discuss the objectiveness of various quality metrics. Further, we report on early findings based on 22 weekly snapshots of 90 CKAN portals and highlight interesting observations and challenges.

# http://data.wu.ac.at/portalwatch/

# Key findings:

- Significantly varying quality acrosss portals
- Rapid growth for some portals
- Huge variety and range of datasets
- Open Data Portal search is a big problem.



# **Open Data Portal search is a big problem... Why?**



|                                                  | data.gv.at                                           | Ċ                                 |                         |
|--------------------------------------------------|------------------------------------------------------|-----------------------------------|-------------------------|
| -                                                |                                                      | Aktuell: GIP-D                    | aten werden OGD 💿 API 💿 |
| gv.                                              | Suchbegr                                             | ff (z.B. Finanzen, Wahlen)        | Q Suche starten         |
| ăt                                               | • Daten &                                            | Dokumente 🔵 Apps & News           | → Katalog durchstöbern  |
| data.gv.at – offene Daten Österreichs            |                                                      |                                   |                         |
| Startseite Daten                                 | <ul> <li>Dokumente – Linked Data Anwendur</li> </ul> | gen – News Infos –                | Netiquette Kontakt      |
| Ottakring Filter Filter einblenden Suche starten | Sie können dieses Feld auch unbefül                  | .t lassen und ausschließlich mit  | t den Filtern arbeiten. |
| Suchergebnis zu "Ottakring" (0 g                 | efunden)                                             |                                   | Seite 1 von 0           |
| alle Datensätze anzeigen                         | Ergebnisseiten: 🗲                                    | Erste Letzte (0) → 1 Geh          | ne zu                   |
|                                                  | Impressum (Datenschutz) 🛛 🔝 Neue Datens              | ätze 🛛 🔊 Geänderte Datensätze     | Anwendungen Noten Infor |
|                                                  |                                                      | Mehr Open Data (Nichtregierungsda | aten) auf www.opendata  |

# **Open Data integration as Search?**

AT13 Α. Α. Α.

Α.

Α. Α. Α. AT13 AT13

VIRTSCHAFTS UNIVERSITÄT WIEN VIENNA AND BUSINESS

https://www.youtube.com/watch?v=kCAymmbYIvc

Structured Data in Web Search by Alon Halevy

| I                 | HTML Tables                        |               |     |       |     |      |  |
|-------------------|------------------------------------|---------------|-----|-------|-----|------|--|
| Brand             | ¢ Browbry ¢                        | MANY<br>(AUV) | CBI | Carty | 182 | Colg |  |
| Nordik Wolf Light | A.B. Pripps Bryggerier<br>(Sweden) | 4.7           | 110 |       |     |      |  |
| Turbodog          | Abita Brewing Company              | 5.6           | 168 | 15    | 28  | 60   |  |
| Abbey Ale         | Abita Brewing Company              | 8.0           | 230 | 18    | 32  | 25   |  |
| Pecan             | Abita Brewing Company              | 5.0           | 150 | 11    | 20  | 19   |  |
| Jockamo           | Abita Brewing Company              | 6.5           | 190 | 13    | 52  | 16   |  |
| Red Ale           | Abita Brewing Company              | 5.2           | 151 | 11    | 30  | 16   |  |
| Amber             | Abita Brewing Company              | 4.5           | 128 | 10    | 17  | 15   |  |
| Bock              | Abita Brewing Company              | 6.5           | 187 | 16    | 25  | 13   |  |
| Fall Fest         | Abita Brewing Company              | 5.4           | 167 | 15    | 20  | 12   |  |
| Restoration       | Abita Brewing Company              | 5.0           | 167 | 15    | 20  | 9    |  |
| Andygator         | Abita Brewing Company              | 8.0           | 235 | 19    | 25  | 8    |  |
| Purple Haze       | Abita Brewing Company              | 4.2           | 128 | 11    | 13  | 8    |  |
| Satsuma           | Abita Brewing Company              | 5.1           | 155 | 11    | 17  | 5    |  |
| Strawberry        | Abita Brewing Company              | 4.2           | 120 | 11    | 13  | 5    |  |
| Save Our Shore    | Abita Brewing Company              | 7.0           | 200 | 15    | 35  | 4    |  |
| Wheat             | Abita Brewing Company              | 4.2           | 125 | 10    | 15  | 3    |  |
| Golden            | Abita Brewing Company              | 4.2           | 125 | 10    | 11  | 3    |  |
| Light             | Abita Brewing Company              | 4.0           | 118 | 8     | 10  | 3    |  |
| Christmas Ale     | Abita Brewing Company              | 7.5           |     |       | 30  |      |  |

| Researt + El Contra 1 + Marcol Proce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |           |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |           |
| and the second s | Merge: Select a table                |           |
| 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggest tables matching on Finland - |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | population                           | 0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | World Population 2                   | view tel: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90% of rows have a match.            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | World Merged                         | view Mit  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62% of rows have a mattch.           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FARA_GUC.xls                         | vire lat  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Each watch adds about 30 reso.       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |           |

|                   |            |                       |                  |                    | 🗎 data.gv.at                       | Ċ        |                        |               |
|-------------------|------------|-----------------------|------------------|--------------------|------------------------------------|----------|------------------------|---------------|
|                   |            |                       |                  |                    |                                    |          |                        |               |
| vy                |            |                       | data             |                    |                                    |          |                        | Aktue         |
|                   |            |                       | gv.              |                    |                                    |          | Suchbegriff (z.B. F    | nanzen, Wahle |
|                   |            |                       | at               |                    |                                    |          | 🖸 Datenkatalog 🌔       | Apps & News   |
|                   |            | data.gv.at – offene D | aten Österreichs |                    |                                    |          |                        |               |
|                   |            | Startse               | ite Daten        | Dokun              | nente – Lin                        | ked Data | Anwendungen 🥆          | News In       |
|                   |            |                       |                  |                    | And a lot of the second lot of the |          | A REPORT OF THE REPORT |               |
|                   |            |                       |                  |                    |                                    |          |                        |               |
|                   |            | Katalog               | ,                |                    |                                    |          |                        |               |
|                   | VS         | Boyölk                | orung in W       | ion <sup>.</sup> B | ozirk - Ga                         | schloch  | +                      |               |
|                   | v J .      | Devolke               |                  | ien. D             |                                    | schiech  | L                      |               |
| В                 | С          | D                     | E                |                    | F                                  | G        | H                      | I             |
| NUTS2             | NUTS3      | DISTRICT_CODE         | SUB_DISTRICT     | _CODE              | POP_TOTAL                          | POP_MEN  | POP_WOMEN              | REF_DATE      |
| AT13              | AT130      | 90101                 |                  | 0                  | 16131                              | 7726     | 8405                   | 01.01.2014    |
| AT13              | AT130      | 90201                 |                  | 0                  | 99597                              | 48650    | 50947                  | 01.01.2014    |
| AT13              | AT130      | 90301                 |                  | 0                  | 86454                              | 41085    | 45369                  | 01.01.2014    |
| AT13              | AT130      | 90401                 |                  | 0                  | 31452                              | 14903    | 16549                  | 01.01.2014    |
| AT13              | AT130      | 90501                 |                  | 0                  | 53610                              | 26299    | 27311                  | 01.01.2014    |
| AT13              | AT130      | 90601                 |                  | 0                  | 30613                              | 14833    | 15780                  | 01.01.2014    |
| AT13              | AT130      | 90701                 |                  | 0                  | 30792                              | 14703    | 16089                  | 01.01.2014    |
| AT13              | AT130      | 90801                 |                  | 0                  | 24279                              | 11855    | 12424                  | 01.01.2014    |
| AT13              | AT130      | 90901                 |                  | 0                  | 40528                              | 19286    | 21242                  | 01.01.2014    |
| AT13              | AT130      | 91001                 |                  | 0                  | 186450                             | 91638    | 94812                  | 01.01.2014    |
| AT13              | AT130      | 91101                 |                  | 0                  | 93440                              | 45541    | 47899                  | 01.01.2014    |
| AT13              | AT130      | 91201                 |                  | 0                  | 90874                              | 43752    | 47122                  | 01.01.2014    |
| A'                |            |                       |                  |                    |                                    |          |                        | 014           |
| A DISC            | ciaime     | er: won               | t atter          | npt                | το ςο                              | mpet     | ' <b>e,</b> DUT .      | •• 014        |
| <sup>A</sup> a) 7 | This loc   | nks like z            | a sliahtl        | v di               | ifferen                            | t nroh   | lem                    | 014           |
| A'                | 1113 100   |                       |                  | y ui               | inci cin                           |          |                        | 014           |
| <u>× b) C</u>     | Can lin    | king to "             | Open"            | kno                | wledge                             | e grap   | hs help                | 2 014         |
| A'                | - ارز از م | ta dha a              | dian             | ח.                 | ahahl.                             | , r      | I.                     | 014           |
| A <sup>.</sup> (  | WIKIUa     | па, ирре              | :uia:)           | . Pľ               | UDADIY                             | · ·      |                        | 014           |
| AT13              | AT130      | 92001                 |                  | 0                  | 84305                              | 41200    | 43105                  | 01.01.2014    |
| AT13              | AT130      | 92101                 |                  | 0                  | 148947                             | 71633    | 77314                  | 01.01.2014    |

# What's next? Research roadmap to make Open Data usage more effective:



- Improving Open Data Quality, make OD better searchable...
- <u>https://www.data.gv.at/wp-content/uploads/2012/03/Mission-Statement-AG-Qualitaetssicherung-OpenData-Portale.pdf</u>





EOUIS

#### WIRED GEAR SCIENCE ENTERTAINMENT BUSINESS SECURITY DESIGN OPINIO

#### sc⊪Beginning<sup>s</sup>

The End of Theory: The Data Deluge Makes the Scientific Method Obsolete

By Chris Anderson 🖂 06.23.08



# ... even the computational social scientists don't buy that:



Nicholas Christakis @NAChristakis 4 13 1 Big data is not the end of theory, but the beginning, argues Michael Macy #ICCSS2015



- Expressive ontology languages (plus e.g. equational knowledge) needed
- combination of reasoning about formal background knowledge & statistical methods needed
- temporal aspects need to be taken into account, but also provenance
- soundness/completeness (KRR) vs. coverage/accuracy (ML)
- "NoLD"... not only Linked Data



evlan,

adir

na in

**EQUIS** 

ina

### **Temporal aspects:**

- On Implementing Temporal Ouerv Answering in DL-Lite (extended abstract) Veronika Thost, Jan Holste, Özgür Özcep (DL2015)
- The Complexity of Temporal Description Logics with Rigid Roles and Restricted TBoxes: In Ouest of Saving a Troublesome Marriage Víctor Gutiérrez Basulto, Jean Christoph Jung, Thomas Schneider (DL2015)
- Temporal Query Answering in EL. Stefan Borgwardt, Veronika Thost (DL2015)
- Interval Temporal Description Logics. Alessandro Artale, Roman Kontchakov, Vladislav Rvzhikov, Michael Zakharyaschev (DL2015)
- Temporal OBDA with LTL and DL-Lite. Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Rvzhikov, Frank Wolter, Michael Zakharvaschev (DI 2014)
- **Comp** Numerical Reasoning? Equations? 233-2

#### Tempe Closest related work on **DLs with concrete domains...** Jared

- Tempo Kontcl
- Snorocket 2.0: Concrete Domains and Concurrent Classification 32-38. Alejandro Metke-Jimenez, Michael Lawley (ORE2013) (DL20
- Concrete domains also supported in HERMIT, Fact++. ...
  - Most foundational works 2005 and before...? E.g.: Tableau Algorithm for DLs with Concrete Domains and GCIs - DL2005 Carsten Lutz, Maia Milicic:

### Inconsistency handling/

### paraconsistent reasoning:

- Reasoning Efficiently with Ontologies and Rules in the Presence of Inconsistencies (Extended Abstract) Tobias Kaminski, Matthias Knorr, Joao Leite (DL2015)
- Explaining Ouerv Answers under Inconsistency-Tolerant Semantics over Description Logic Knowledge Bases (Extended Abstract) Meghyn Bienvenu, Camille Bourgaux, François Goasdoué (DL2015)
- OBDA Using RL Reasoners and Repairing 729-733 Giorgos Stoilos (DL2014)
- Ouerving Inconsistent Description Logic Knowledge Bases under Preferred Repair Semantics 96-99 Camille Bourgaux, Meghyn Bienvenu, Francois Goasdoué (DL2014)



WIRED GEAR SCIENCE ENTERTAINMENT BUSINESS SECURITY DESIGN OPINIO

### scuBeginnings 🔤

The End of Theory: The Data Deluge Makes the Scientific Method Obsolete

By Chris Anderson 🖂 06.23.08



# ... even the computational social scientists don't buy that:



Nicholas Christakis @NAChristakis Big data is not the end of theory, but the beginning, argues Michael Macy #ICCSS2015



- Expressive ontology languages (plus e.g. equational knowledge) needed
- combination of reasoning about formal background knowledge & statistical methods needed
- temporal aspects need to be taken into account, but also provenance
- soundness/completeness (KRR) vs. coverage/accuracy (ML)
- "NoLD"... not only Linked Data
- Maybe you find our datasets useful:
- data.wu.ac.at/portalwatch
- citydata.wu.ac.at

