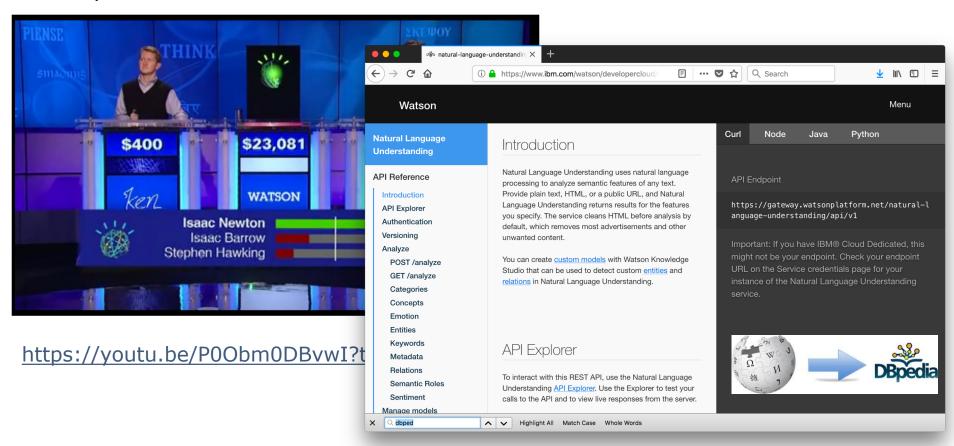
Building and Using an Open Knowledge Graph *for* and *from* Open Data

Axel Polleres

Joint work with: Sebastian Neumaier, Jürgen Umbrich

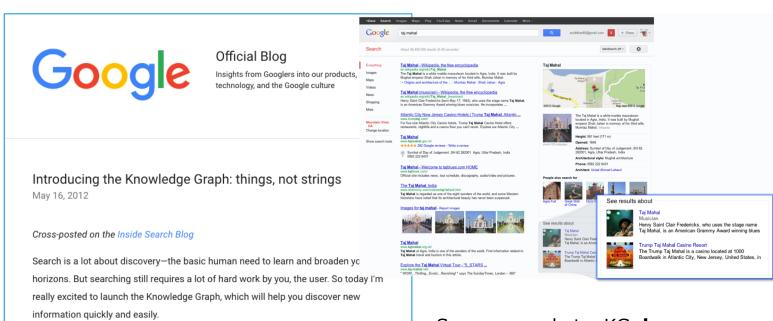

What is Open Data?

How do they connect?

2 applications for using Knowledge Graphs & Linked Data for *Open Data Search*!

Probably I don't need to ask this here...

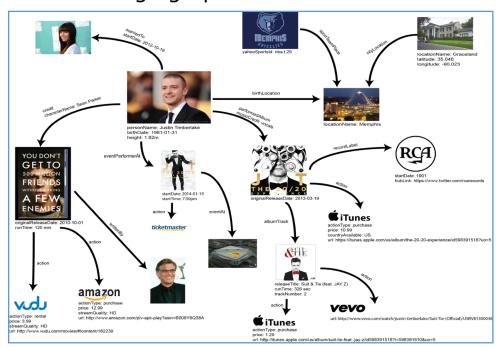
But seriously: What IS a Knowledge Graph?


Take a query like [taj mahal]. For more than four decades, search has essentially been

about matching keywords to queries. To a search engine the words [taj mahal] have

... good question!

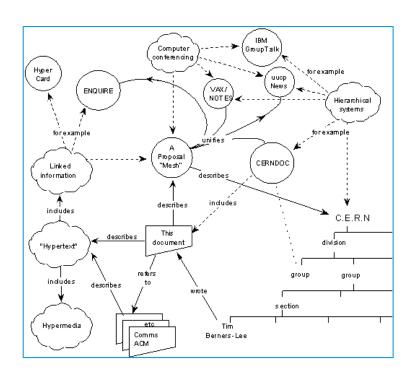
been just that-two words.


Says more what a KG **does** than what it **is**... "interesting things and [understanding their] relationships [to improve Search]"

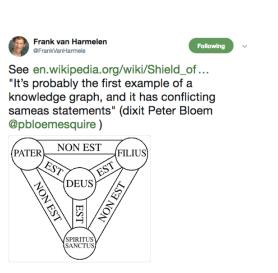
Semantic Search: Yahoo's knowledge graph...

Source: What happened to the Semantic Web? Peter Mika, Keynote at ACM Hypertext, July 5, 2017

https://www.slidesh are.net/pmika/what -happened-to-thesemantic-web

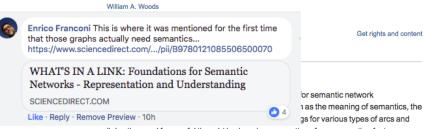


Doesn't look too different from that one?


Source:

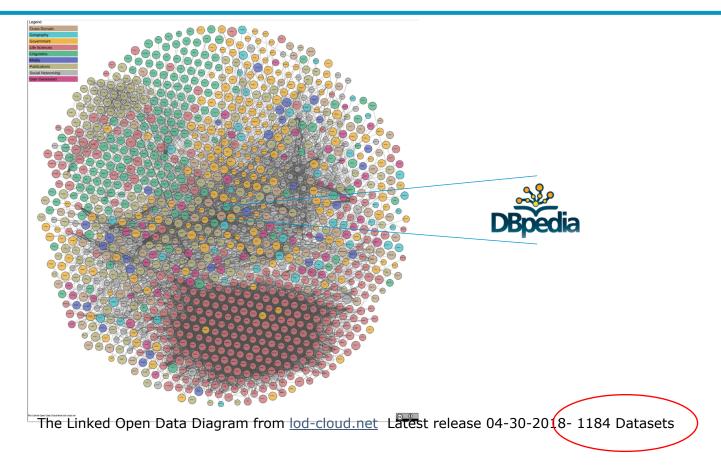
https://www.w3.org/ History/1989/proposa I.html Tim Berners-Lee, 1989

 Some more random proposals of what was the "first knowledge graph from social media...:



https://en.wikipedia.org/wiki/Shi eld of the Trinity

WHAT'S IN A LINK: Foundations for Semantic Networks



links, the need for careful thought in choosing conventions for representing facts as assemblages of arcs and nodes, and several specific difficult problems in knowledge representation—especially problems of relative clauses and quantification. When the semantics of the notations are made clear, many of the techniques used in existing semantic networks are inadequate for representing knowledge in general. The chapter presents the logical inadequacies of almost all current network notations for representing quantified information and also discusses some of the disadvantages of a few logically adequate techniques.

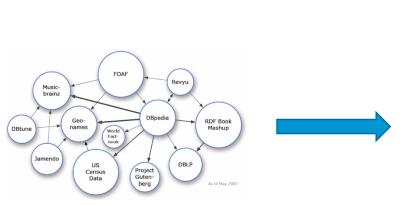
https://www.sciencedirect.com/science/article/pii/B9780121085506500070

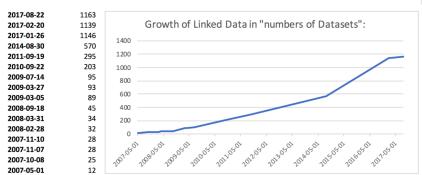
When we hear about Open Data and Knowledge Graphs... many think about Linked Open Data...

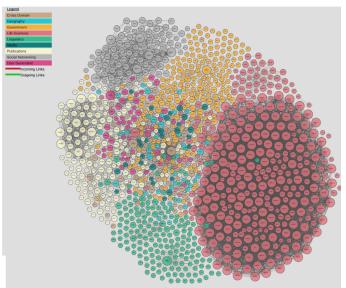
So What is actually Linked Data...?

https://www.w3.org/community/webize/2014/01/17/what-is-5-star-linked-data/

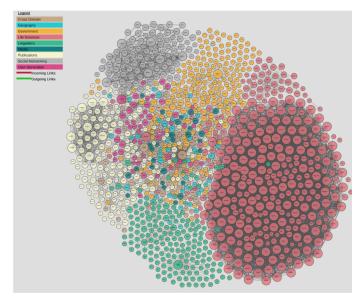
*	Available on the web (whatever format) but with an open licence, to be Open Data
**	Available as machine-readable structured data (e.g. excel instead of image scan of a table)
***	as (2) plus non-proprietary format (e.g. CSV instead of excel)
***	All the above plus, Use open standards from W3C (RDF and SPARQL) to identify things, so that people can point at your stuff
****	All the above, plus: Link your data to other people's data to provide context


Linked Data Principles


- LDP1: use URIs as names for things
- LDP2: use HTTP URIs so those names can be dereferenced
- LDP3: return useful RDF? information upon dereferencing those URIs
- LDP4: include links using externally dereferenceable URIs.


https://www.w3.org/DesignIssues/LinkedData.html

Linked Open Data... growth since ~10 years


Linking Open Data cloud diagram 2007-2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

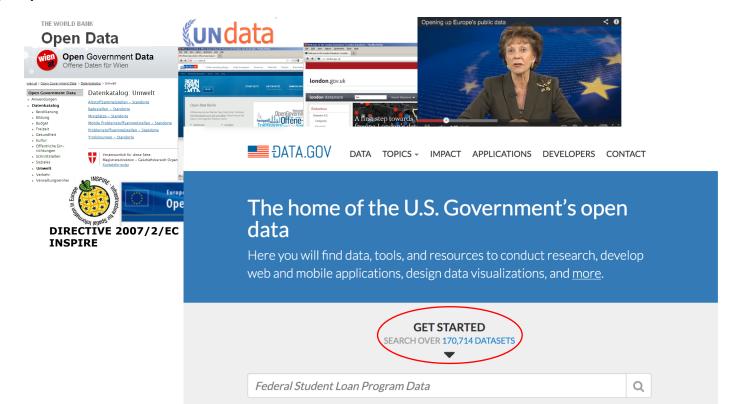
Linked Open Data...

Summary:

- Web inspired Data exchange Format (RDF)
- Open Standards and Principles to build, publish and interlink decentralized Knowledge Graphs
- Did in fact inspire many other Knowledge Graphs!

Linking Open Data cloud diagram 2007-2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

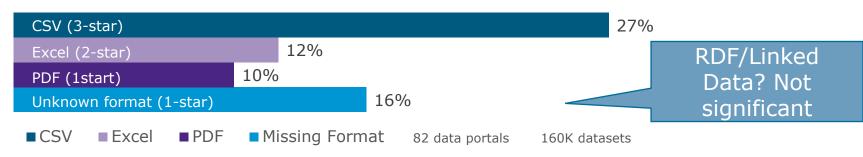
But: Open Data is a lot more than Linked Open Data...


What is Open Data?

How do they connect?

Open Data is a Global Trend!

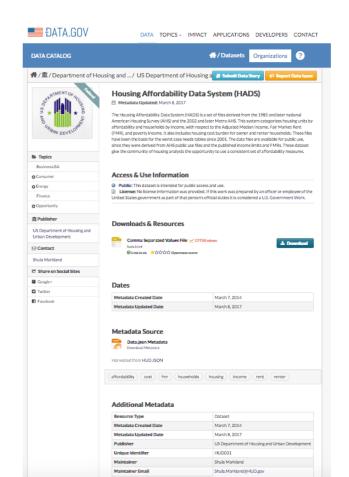
EU & Austria, but also the (previous) US and UK administration are/were pushing Open Data!

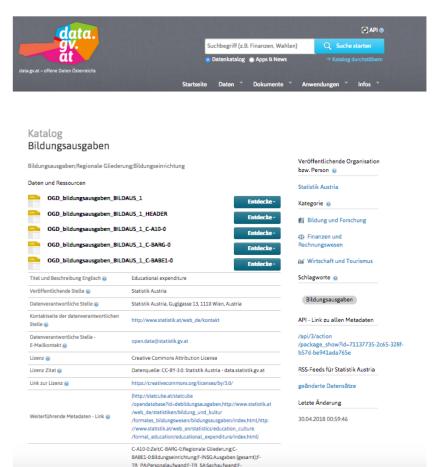


(Structured) Open Data comes in various ways

Available data is only partially structured and not linked [1]:

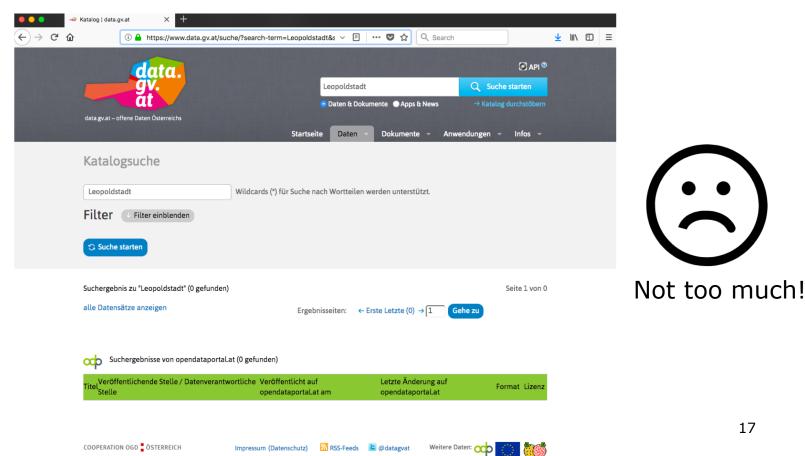
Open Data as a Global Trend:



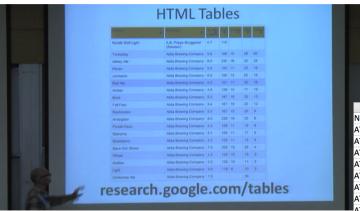

Country	URL	Datasets
United States	data.gov	170.7k
Canada	open.canada.ca	79.1k
UK	data.gov.uk	45.1k
France	www.data.gouv.fr	34.2k
Russia	opengovdata.ru	30.3k
Japan	data.go.jp	21k
Italy	dati.gov.it	20.4k
Germany	govdata.de	19.8k

Data portals of the G8 countries

Different portals...



What do you find on Open Data Portals?



Why is Search in Open Data a problem?

https://www.youtube.com/watch?v=kCAymmbYIvc

Structured Data in Web Search by Alon Halevy

Data Integration as Search

NUTS2	NUTS3	DISTRICT_CODE	SUB_DISTRICT_CODE	POP_TOTAL	POP_MEN	POP_WOMEN	REF_DATE	
AT13	AT130	90101	0	16131	7726	8405	01.01.2014	
AT13	AT130	90201	0	99597	48650	50947	01.01.2014	
AT13	AT130	90301	0	86454	41085	45369	01.01.2014	
AT13	AT130	90401	0	31452	14903	16549	01.01.2014	
AT13	AT130	90501	0	53610	26299	27311	01.01.2014	
AT13	AT130	90601	0	30613	14833	15780	01.01.2014	
AT13	AT130	90701	0	30792	14703	16089	01.01.2014	
AT13	AT130	90801	0	24279	11855	12424	01.01.2014	
AT13	AT130	90901	0	40528	19286	21242	01.01.2014	
AT13	AT130	91001	0	186450	91638	94812	01.01.2014	
AT13	AT130	91101	0	93440	45541	47899	01.01.2014	
AT13	AT130	91201	0	90874	43752	47122	01.01.2014	

Open Data Search is hard...

- a) No natural language "cues" like in Web tables...
- b) Existing knowledge graphs don't cover the domain of "Open Data" well
- c) Open Data is not properly geo-referenced

2 applications for using Knowledge Graphs & Linked Data for Open Data Search!

- What we do: 2 approaches how knowledge graphs could help to solve the Open Data search problem (aside the obvious):
 - 1. Hierarchical labelling of Labeling of numeric data
 - 2. Hierarchical labelling of Spatio-Temporal entities

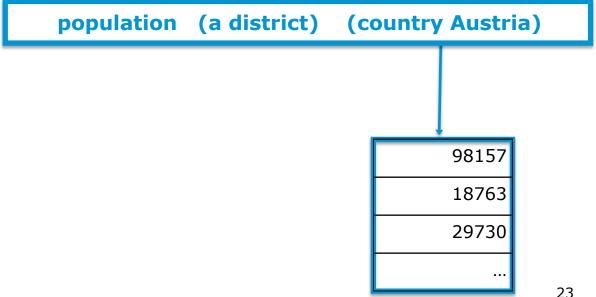
Example Table

federal state	district	year	sex	population
Hanan Arrabaia	1:	2012		00157
Upper Austria	Linz	2013	male	98157
Upper Austria	Steyr	2013	male	18763
	-			
Upper Austria	Wels	2013	male	29730

Open Data CSVs look more like this

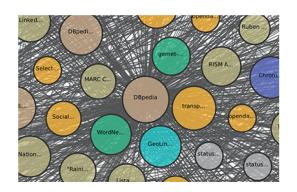
NUTS2	LAU2_NAME	YEAR	YEAR SEX	
AT31	Linz	2013	1	98157
AT31	Steyr	2013	1	18763
AT31	Wels	2013	1	29730

Why not use the numeric values?


- Identifying the most likely semantic label for a bag of numerical values
- Deliberately ignore surroundings

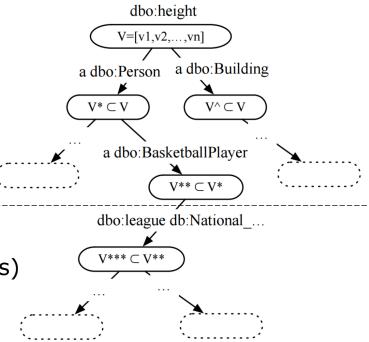
NUTS2	LAU2_NAME	YEAR	SEX	P_TOTAL
AT31	Linz	2013	1	98157
AT31	Steyr	2013	1	18763
AT31	Wels	2013	1	29730

Why not use numeric values?



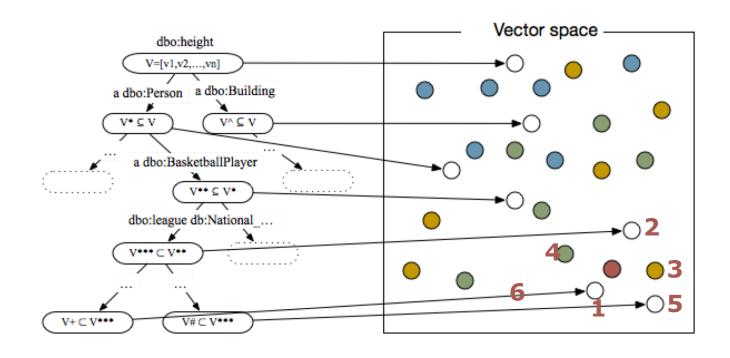
- Identifying the most likely semantic label for a bag of numerical values
- Deliberately ignore surroundings

Background Knowledge Graph


What's in there?

- Cities
 - Population
 - Area
 - Country
 - Location (Coordinates)
 - Economic indicators
 - ..
- Organisations:
 - Revenues
 - Board members
 - ...
- Persons (e.g. celebrities, sports)
 - Name
 - Profession
 - Height
- Landmarks (e.g. famous buildings)
 - Country
 - Location
 - Height
- Events
 - Dates
 - Location

Background Knowledge Graph



- Find properties with numerical range
- Hierarchical clustering approach
- Two hierarchical layers:
 - Type hierarchy (using OWL classes)
 - Property-object hierarchy (shared property-object pairs)

Label based on Nearest Neighbors

Example OD Labelling

populationTotal (a Settlement) populationDensity (a City)

NUTS1	NUTS2	NUTS3	DISTRICT_CODE	T	WV	WK	BZ	SPR	WBER	ABG.	UNG.	OEVP	SPOE	FPOE	GRUE	BZOE	NEOS
AT1	AT13	AT130		1	9	0	0	0	1163061	503284	9386	81974	136391	89963	103249	1516	44891
AT1	AT13	AT130		2	9	1	0	0	111279	52674	774	9344	12395	6482	14154	114	5412
AT1	AT13	AT130		2	9	2	0	0	98379	51785	646	10324	10236	4700	15398	124	6569
AT1	AT13	AT130		2	9	3	0	0	110527	45483	810	5317	13304	7816	10944	115	3613
AT1	AT13	AT130		2	9	4	0	0	229521	84387	1953	10097	27922	21091	11631	256	5299
AT1	AT13	AT130		2	9	5	0	0	212262	97755	1806	18703	25314	16613	19333	324	9175
AT1	AT13	AT130		2	9	6	0	0	175288	82790	1321	17560	19059	11765	18996	242	8389
AT1	AT13	AT130		2	9	7	0	0	225805	88410	2076	10629	28161	21496	12793	341	6434
AT1	AT13	AT130	90301	3	9	1	3	0	57528	27320	412	4938	6586	3567	6969	68	2789
AT1	AT13	AT130	90401	3	9	1	4	0	21000	11027	138	2401	2253	1068	3082	26	1277
AT1	AT13	AT130	90501	3	9	1	5	0	32751	14327	224	2005	3556	1847	4103	20	1346

Source: http://data.wu.ac.at/iswc2016_numlabels/submission/col14.html

Lessons learned

- We can assign fine-grained semantic labels
 - If there is enough evidence in BK
- However: Missing domain knowledge for labelling OD

Future work:

- Complementary to existing approaches (column header labeling, entity linking and relation extraction)
- Combined approaches may improve results
- Focusing on core dimensions of specific domains e.g. city data, maye more promising than "general" value labeling.

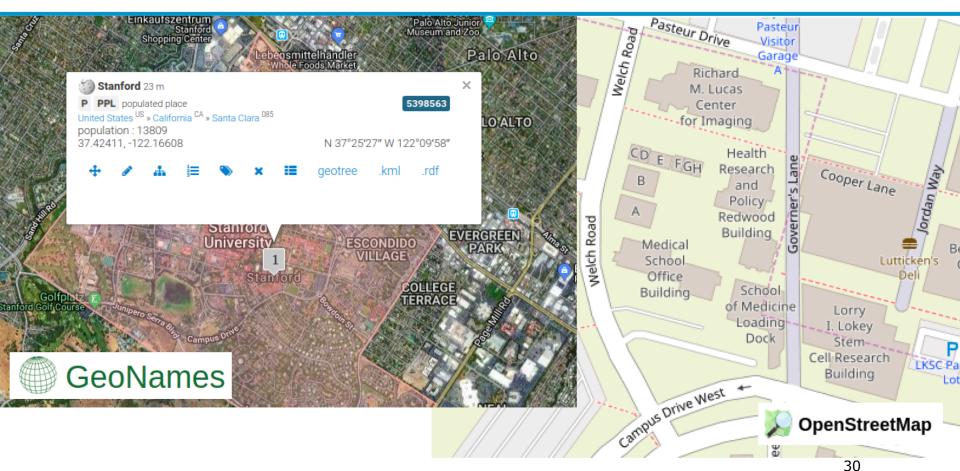
International Semantic Web conference 2016:

Multi-level semantic labelling of numerical values

Sebastian Neumaier1, Jürgen Umbrich1, Josiane Xavier Parreira2, and Axel Polleres1

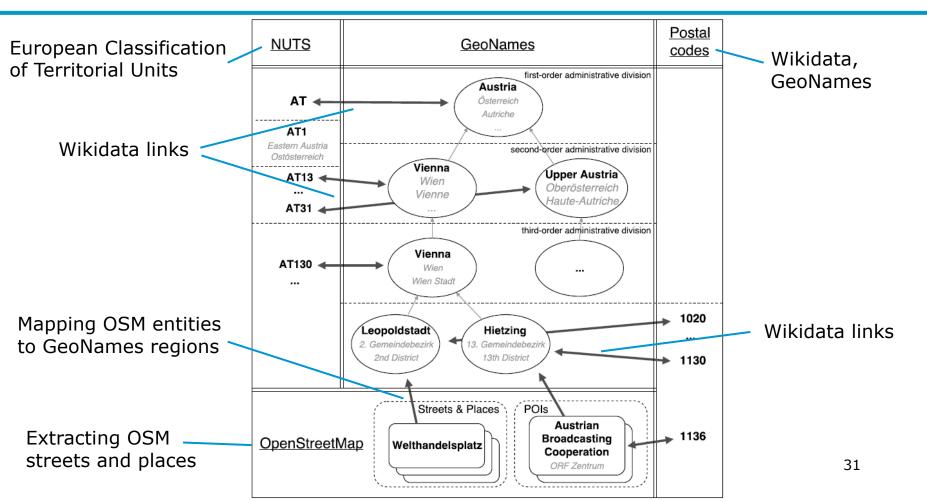
Vienna University of Economics and Business, Vienna, Austria
² Siemens AG Österreich, Vienna, Austria

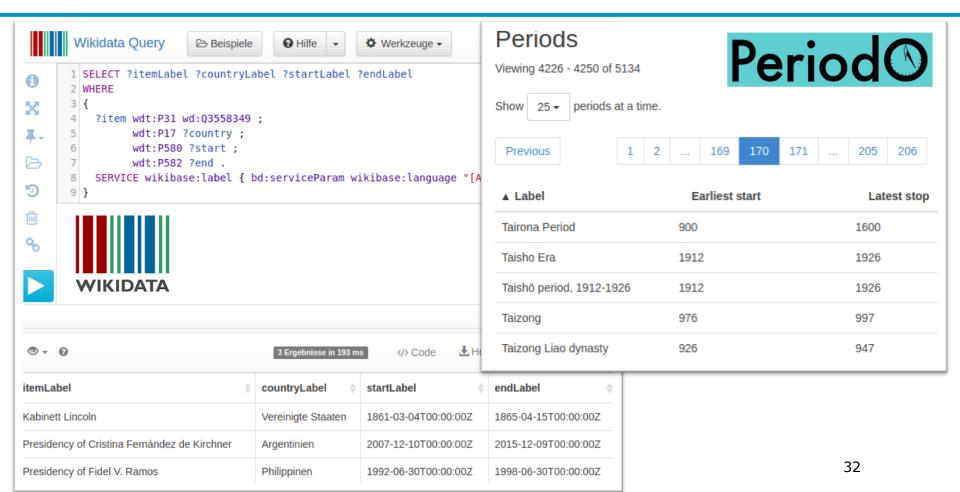
What else can we do/use?


Focus on specific dimensions:

Particularly temporal and geospatial queries require better support [2]

NUTS2	LAU2_NAME	YEAR	YEAR SEX	
AT31	Linz	2013	1	98157
AT31	Steyr	2013	1	18763
AT31	Wels	2013	1	29730


Available Geospatial Knowledge Bases

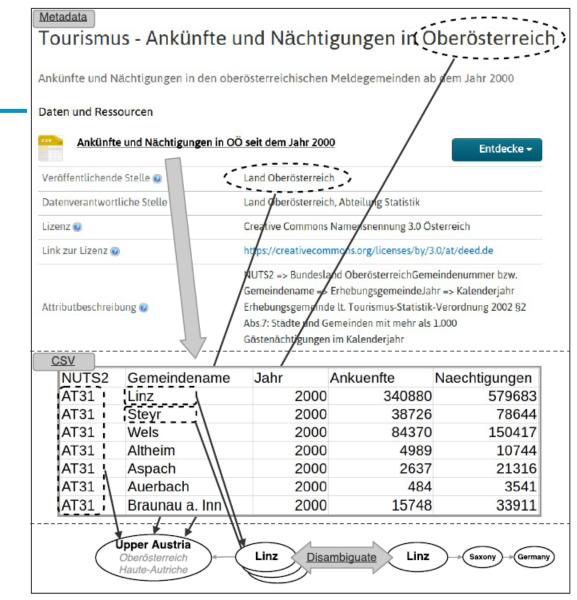

Geo-Knowledge Graph Construction

Available Temporal Knowledge

Temporal Knowledge Graph Construction


```
CONSTRUCT {
  ?event rdfs:label ?label ; dcterms:isPartOf ?Parent ; dcterms:coverage ?geocoordinates ;
    timex:hasStartTime ?StartDateTime ; timex:hasEndTime ?EndDateTime ; dcterms:spatial ?geoentity .
 # find events with (for the moment) English, German, or non-language-specific labels:
  ?event wdt:P31/wdt:P279* wd:Q1190554 . ?event rdfs:label ?label .
  FILTER( LANG(?label) = "en" || LANG(?label) = "de" || LANG(?label) = "" ).
  # restrict to certain event categories, e.g. (for the moment) elections and sports events:
  { # elections #sports competitions
  { ?event wdt:P31/wdt:P279* wd:Q40231 } UNION { ?event wdt:P31/wdt:P279* wd:Q13406554 }
  { # with a point in time or start end end date
   { ?event wdt:P585 ?StartDateTime . FILTER ( ?StartDateTime > "1900-01-01T00:00:00"^xsd:dateTime) }
   { ?event wdt:P580 ?StartDateTime. FILTER ( ?StartDateTime > "1900-01-01T00:00:00"^^xsd:dateTime)
      ?event wdt:P582 ?EndDateT. FILTER ( DATATYPE(?EndDateT) = xsd:dateTime) }
  OPTIONAL { ?event wdt:P361 ?Parent }
  # specific spatialCoverage if available
  OPTIONAL { ?event wdt:P276?/(wdt:P17|wdt:P131) ?geoentity }
  OPTIONAL { ?event wdt:P276?/wdt:P625 ?geocoordinates }
  BIND (if(bound(?EndDateT), ?EndDateT, xsd:dateTime(concat(str(xsd:date(?StartDateTime)), "T23:59:59"))) AS ?EndDateTime)
CONSTRUCT {
  ?P rdfs:label ?label ; dcterms:isPartOf ?Parent ; dcterms:spatial ?geo ;
  timex:hasStartTime ?StartDateTime ; timex:hasEndTime ?EndDateTime
} WHERE {
   { ?P skos:prefLabel ?label } UNION { ?P skos:altLabel ?label } UNION { ?P rdfs:label ?label }
 ?P time:intervalFinishedBy ?End ; time:intervalStartedBy ?Start.
 OPTIONAL { ?P periodo:spatialCoverage ?geo }
 OPTIONAL { ?P dcterms:spatial ?geo }
 OPTIONAL { ?P dcterms:isPartOf ?Parent. }
  OPTIONAL{ ?End time:hasDateTimeDescription ?EndTime .
   OPTIONAL{ ?EndTime time: year ?EndYear }
   OPTIONAL{ ?EndTime periodo:latestYear ?EndYear }
 OPTIONAL{ ?StartTime time:year ?StartYear }
   OPTIONAL{ ?End (!periodo:aux)+ ?EndYear. FILTER (isLiteral(?StartYear)) }
FILTER( ?StartYear >= "1900"^xsd:gYear || xsd:integer(?StartYear) >= 1900 ||
       ?EndYear >= "1900"^^xsd:gYear || xsd:integer(?EndYear) >= 1900 )
 BIND( xsd:dateTime(concat(str(?StartYear),"-01-01T00:00:00")) as ?StartDateTime )
 BIND( xsd:dateTime(concat(str(?EndYear),"-12-31T23:59:59")) as ?EndDateTime ) }
```

- Named events and their labels
- Links to parent periods
- Temporal extent: a single beginning and end date
- Links to the spatial coverage

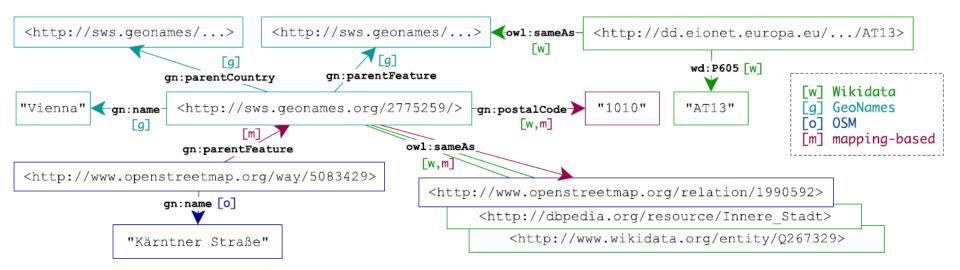

Dataset Labelling

Metadata descriptions

- Geo-entities in titles, descriptions, organizations
- Restricted to "origin" country of the dataset (from portal)
- Temporal tagging using Heideltime framework [3]

CSV cell value disambiguation

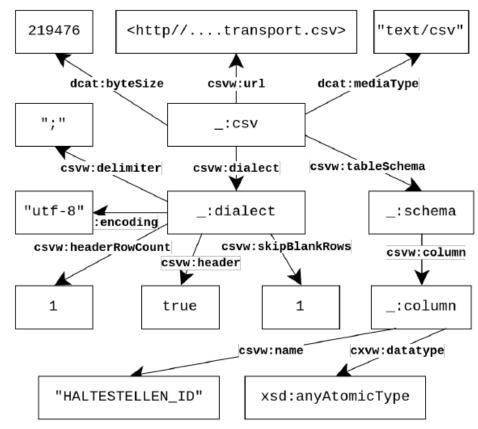
- Row context:
 - Filter candidates by potential parents (if available)
- Column context:
 - Least common ancestor of the spatial entities


Indexed Datasets

portal	$\underline{\text{datasets}}$	$\underline{\mathbf{CSVs}}$	indexed
total			15728
govdata.de	19464	10006	5646
data.gv.at	20799	18283	2791
offenedaten.de	28372	4961	2530
datos.gob.es	17132	8809	1275
data.gov.ie	6215	1194	884
data.overheid.nl	12283	1603	828
data.gov.uk	44513	7814	594
data.gov.gr	6648	414	496
data.gov.sk	1402	877	384
www.data.gouv.fr	28401	6038	258
opingogn.is	54	49	41

RDF Export 1/2: Knowledge Graph

- Spatial and temporal base knowledge graph
- Annotated data points in metadata and CSV cells
- CSV metadata using CSVW vocabulary
 - e.g., delimiter, encoding, header, ...


RDF Export 2/2: CSV on the Web Metadata [4]

- Note: no real cell level annotaitons, we needed to add those!
- E.g.:
 - csvwx:cell
 - csvwx:hasTime
 - csvw:refersToEntity
 - ...

Details: cf.:

http://data.wu.ac.at/ns/csvwx

SPARQL Endpoint (1)

Find datasets within time-range and referring to geospatial entity:

```
SELECT ?d ?url WHERE {
  # select the dates of the past two election in Austria
  wd:Q1386143 timex:hasStartTime ?t1 .
  wd:Q19311231 timex:hasStartTime ?t2 .
  # select the min and max date values of a dataset
  ?d dcat:distribution [
    dcat:accessURL ?url;
    timex:hasStartTime ?start ;
    timex:hasEndTime ?end
  # select only datasets about Vienna
  ?d csvwx:refersToEntity <a href="http://sws.geonames.org/2761369/">http://sws.geonames.org/2761369/ .
  FILTER((?start >= ?t1) && (?end <= ?t2))
```

SPARQL Endpoint (2)

Text search for a time period and its temporal and spatial coverage

Query for cells within time period and referring to geo-entity

```
SELECT ?d ?url ?rownum WHERE {
  # get the "Anschluss movement"
  ?p rdfs:label ?L.
  FILTER (CONTAINS(?L, "Anschluss movement") ) .
  ?p timex:hasStartTime ?start ; timex:hasEndTime ?end ; dcterms:spatial ?sp
  # find the GeoNames entities
  ?spatial owl:sameAs ?sp .
  ?d dcat:distribution [ dcat:accessURL ?url ] .
  [] csvw:url ?url ; csvw:tableSchema ?s .
  # find a cell where date falls in the range of the found period
  ?s csvw:column ?col1 .
  ?col1 csvwx:cell [
    csvw:rownum ?rownum ;
    csvwx:hasTime ?cTime
  FILTER((?cTime >= ?start) && (?cTime <= ?end))
  # find another cell in the same row where the geo-entity has the
  # spatial coverage area of the found period as the parent country
  ?s csvw:column ?col2 .
  ?col2 csvwx:cell [
    csvw:rownum ?rownum ;
    csvwx:refersToEntity [ gn:parentCountry ?spatial ]
```

GeoSPARQL Queries

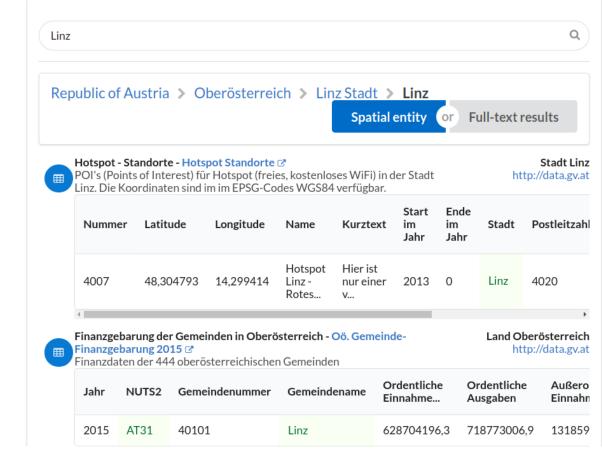
- Standard for representation and querying of geospatial linked data
- (Almost) no complete implementations of GeoSPARQL

```
SELECT ?d ?url ?rownum WHERE {
    # get the geometry of the Viennese district "Leopoldstadt"
    <a href="http://sws.geonames.org/2772614/">http://sws.geonames.org/2772614/</a> geosparql:hasGeometry ?polygon .

?d dcat:distribution [ dcat:accessURL ?url ] .
    [ csvw:url ?url ; csvw:tableSchema ?s ].
    # select the geometries of any annotated cells
    ?s csvw:column ?col .
    ?col csvwx:cell [ csvw:rownum ?rownum ; csvwx:refersToEntity [ geosparql:hasGeometry ?g ]

# filter all annotated data points within the polygon of Leopoldstadt
    FILTER(geof:sfWithin(?g, ?polygon))
}
```

Search Interface


Faceted query interface:

- Timespan
- Time pattern
- Geo-entities
- Full-text queries

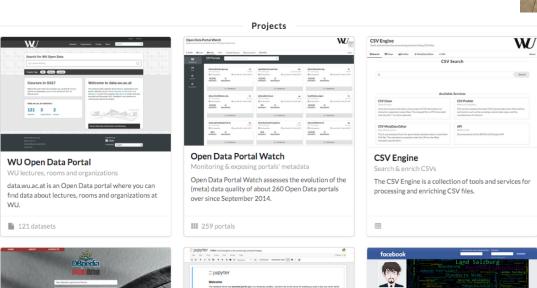
Back end:

- MongoDB for efficient key look-ups
- ElasticSearch for indexing and full-text queries
- Virtuoso as a triple store

Conclusions & Outlook

- Open (Structured) Data is a rich source of Knowledge worthwhile to tap into
- Most of it is not (yet) Linked Data.

What we did:


- Hierarchical knowledge graph of spatial and temporal entities
- Algorithms to annotate CSV tables and their metadata descriptions
 - → KGs improve search (with some extra work)

What's next:

- Enable GeoSPARQL (or an alternative geospatial-query language)
- Parsing coordinates in datasets
- Extending the base KG/Linking more entities:
 - Publishing organisations, governance, elections, etc.
- Parse other file fomats, e.g., XML, PDF, ...
- Use our enrichments to link Open data with other data: tweets or web pages (e.g., newspaper articles)

Other Ongoing Projects (data.wu.ac.at)

What else are we working on?

- Open Data Portalwatch
 - 1) Monitoring Metadata quality
 - 2) Mapping to standard vocabularies
 - 3) Enriching Metadata to improve search (talked about that already)

1) Monitoring and QA over evolving data portals

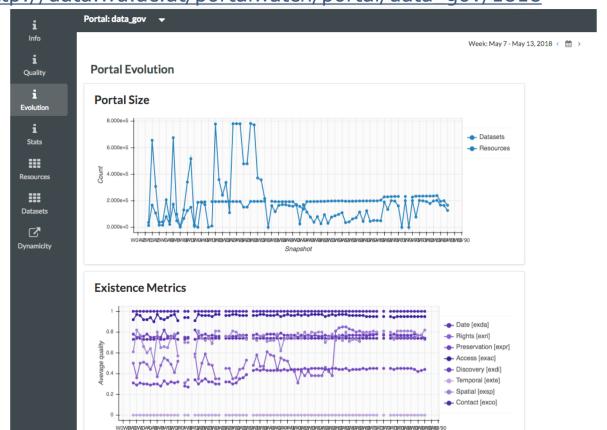
3/2015 [1]:

90portalsOnlyCKAN

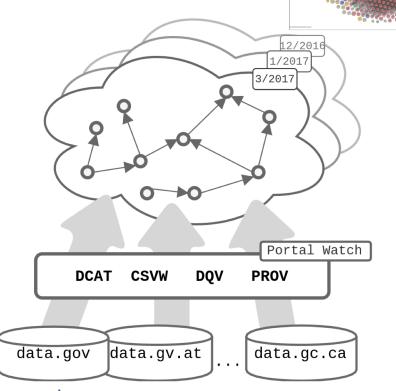
8/2015 [2]:

- 6 quality metrics - OA 6/2016 [3]:

- 260 portals
- CKAN, Socrata, OpenDataSoft
- 18 metrics


	total	CKAN	Socrata	ODSoft	DCAT
portals	261	149	99	11	2
datasets	854,013	767,364	81,268	3,340	2,041
URLs	2,057,924	1,964,971	104,298	12,398	6,092

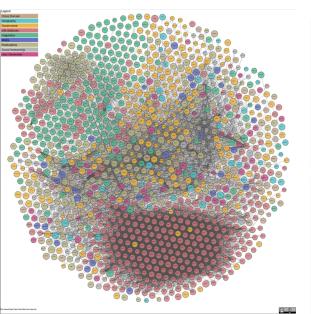
- [1] Towards assessing the quality evolution of open data portals. In ODQ2015: Open Data Quality Workshop, Munich, Germany
- [2] Quality assessment & evolution of open data portals. In: International Conference on Open and Big Data, Rome, Italy (2015)
- [3] Automated quality assessment of metadata across open data portals. ACM Journal of Data and Information Quality (2016)



http://data.wu.ac.at/portalwatch/portal/data_gov/1818

2) Mapping to Standard vocabularies & Linked Data

- Mapping & Heuristic Enrichment
 - DCAT
 - PROV
 - CSVW
 - Schema.org
- Enable uniform access:
 - →SPARQL endpoint
 - → Linked Data & Memento Protocol



- [1] http://data.wu.ac.at/portalwatch/sparql
- [2] http://data.wu.ac.at/odso/

Thank you!

Only available within local WU Vienna network

Open Data Portal Watch assesses the evolution of the

Open Data Portal Watch

Projects

Backup Slides

Spatio-temporal labelling – Evaluation:

Total numbers of spatial and temporal annotations of metadata descriptions and columns:

	Spatial	Temporal	
$\underline{\text{Columns}}$	$\underline{\text{Metadata}}$	Columns	$\underline{\text{Metadata}}$
3518	11231	2822	9112

10 random CSV datasets per portal (11 portals), 10 random rows per dataset:

- In total inspected 101 datasets 1010 rows
- 87 Correctly assigned labels at the dataset level
- 37 CSV datasets that contain potentially missing annotations (e.g. text that would need to be parsed first, or malformed CSVs, etc.)
- 9 Incorrect links to GeoNames
- 9 Incorrect links to OSM