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Abstract. The Shapes Constraint Language (SHACL) is a recent W3C
recommendation for validating RDF graphs against shape constraints to
be checked on target nodes of the data graph. The standard also de-
scribes the notion of validation reports for data graphs that violate given
constraints, which aims to provide feedback on how the data graph can
be fixed to satisfy the constraints. Since the specification left it open to
SHACL processors to define such explanations, a recent work proposed
the use of explanations in the style of database repairs, where a repair
is a set of additions to or deletions from the data graph so that the re-
sulting graph validates against the constraints. In this paper, we study
such repairs for non-recursive SHACL, the largest fragment of SHACL
that is fully defined in the specification. We propose an algorithm to
compute repairs by encoding the explanation problem – using Answer
Set Programming (ASP) – into a logic program, the answer sets of which
correspond to (minimal) repairs. We then study a scenario where it is not
possible to simultaneously repair all the targets, which may be often the
case due to overall unsatisfiability or conflicting constraints. We intro-
duce a relaxed notion of validation, which allows to validate a (maximal)
subset of the targets and adapt the ASP translation to take into account
this relaxation. Our implementation in Clingo is – to the best of our
knowledge – the first implementation of a repair generator for SHACL.

Keywords: SHACL · Shapes Constraint Language · Database Repairs
· RDF Graphs · Semantic Web.

1 Introduction

Semantic Web standards provide means to represent and link heterogeneous
data sources in knowledge graphs [10], thereby potentially solving common data
integration problems. Indeed, this approach became increasingly popular in en-
terprises for the consolidation of data silos in the form of so-called enterprise
knowledge graphs (EKG). However, in practice this flexible and expressive ap-
proach to data integration requires powerful tools for ensuring data quality,
including ways to avoid creating invalid data and inconsistencies in the target
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EKGs. To this end, the W3C proposed the Shapes Constraint Language SHACL,
in order to enable validation of RDF graphs against a set of shape constraints [1].
In this setting, the validation requirements are specified in a shapes graph (C, T )
that consists of a collection C of validation rules (constraints) and a specifica-
tion T of nodes to which various constraints should be applied. The result of
validating an RDF graph (or, data graph) G against a shapes graph (C, T ) is
a validation report, which lists the constraint violations present in G. Unfor-
tunately, validation reports, as specified in the SHACL standard, contain little
information on what steps could be made to resolve those constraint violations.
Since in many common scenarios (like the automated integration of heteroge-
neous data sources) inconsistencies appear very frequently, there is a need to
automatically identify repairs that can be applied to the data graph in order to
achieve consistency. A repair in our context is a collection of additions and dele-
tions of facts that will cause the data to be consistent with the given constraints.
Our contributions are as follows:

◦ We propose to compute repairs of a data graph by encoding the problem
into Answer Set Programming (ASP) [7]. In particular, we show how to transform
a given data graph G and a SHACL shapes graph (C, T ) into an ASP program P
such that the answer sets (or, stable models) of P can be seen as a collection of
plausible repairs of G w.r.t. the shapes graph (C, T ). Since efficient ASP solvers
exist (we use Clingo [9]), this provides a promising way to generate data repairs in
practice. The repair generation task is challenging, because a given data graph
might be repaired in many different ways. In fact, since fresh nodes could be
introduced during the repair process, an infinite number of repairs is possible.
This needs to be handled carefully and several design choices are possible.

◦ We initially present the basic encoding of the repair task into ASP. In this
encoding, the repair program tries to find a repair that satisfies all targets of the
input shapes graph. This encoding employs a particular strategy for introducing
new nodes in the data graph: when a value for a property needs to be added (e.g.
for a violated sh:minCount constraint), a fresh value is always introduced. We
argue that it is a reasonable strategy; it is also closely related to the standard
notion of Skolemization. By using some of the features of ASP, we ensure that our
repair program generates repairs that are minimal in terms of cardinality, which
means that they contain only minimal modifications for resolving constraint
violations. Our basic encoding is later extended to allow for the introduction of
fresh nodes as well as the reuse of existing or previously introduced nodes.

◦ We observe that requiring a repair to resolve violations for all specified
targets may be too strong. In the context of the basic encoding, if the data graph
has one inherently unfixable target (e.g., because of some erroneous constraint),
then the repair program will have no answer sets at all and it will provide no
guidance on how to proceed with fixing the data graph. To address this issue,
we introduce the notion of maximal repairs, which repair the highest number of
targets that is possible to repair. We show how our encoding can be augmented to
generate repairs according to this new notion. This is done using the optimization
features of Clingo as well as rules that allow to skip some targets.
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◦We have implemented and tested these encodings using the Clingo ASP sys-
tem, which showed that our approach is promising for providing quality control
and quality improvements for RDF graphs for practical use.

Related Work. Our approach is inspired by previous work in the area of
databases on computing repairs for violations of database integrity constraints
(see, e.g., [5]) and reasoning about them. We adapt it for the RDF data model
and SHACL constraints. Close to our work is [11], where database repairs are
specified using disjunctive logic programs with the answer set semantics. These
repairs modify a database to achieve conformance with a set of integrity con-
straints that are applied to a relational database. The repair program uses an-
notations to indicate which atoms should be added or deleted to satisfy the
constraints. The program contains rules whose body identifies a violation of a
constraint, while a disjunctive rule head describes the candidate actions (addi-
tions and deletions of tuples) that can potentially be used to resolve the iden-
tified violation. These repair rules can interact and possibly resolve conflicting
constraints, eventually stabilizing into a minimal repair. The repair program
contains constraints to prevent models with conflicting insertions and deletions.
The so-called interpretation rules are then used to collect the actual additions
and deletions corresponding to a possible database repair.

2 SHACL Validation and Answer Set Programming

In this section, we describe SHACL [1] and the notion of validation against RDF
graphs. For an introduction to data validation, SHACL, and its close relative
ShEx, we refer to [8]. We also describe answer set programming (ASP), which
we use to implement the repair program.

SHACL Validation We use the abstract syntax from [2] for RDF and SHACL.
Note that in this work we focus on the fragment of SHACL ’Core Constraint
Components’ without path expressions (except for inverse roles), equality and
disjoint operators.

Data graph. We first define data graphs1, which are RDF graphs to be val-
idated against shape constraints. Assume countably infinite, mutually disjoint
sets N, C, and P of nodes (or constants), class names, and property names,
respectively. A data graph G is a finite set of (ground) RDF atoms of the form
B(c) and p(c, d), where B is a class name, p is a property name, and c, d are
nodes.

Syntax of SHACL. Let S be a countably infinite set of shape names, disjoint
from N, C, and P. A shape expression ϕ is of the form:

ϕ, ϕ′ ::= ⊤ | s | B | c | ϕ ∧ ϕ′ | ¬ϕ |≥n r.ϕ (1)

where s ∈ S, B ∈ C, c ∈ N, n is a positive integer, and r is a property p ∈ P or
an inverse property of the form p− with p ∈ P. In what follows, we may write

1 https://www.w3.org/TR/shacl/#data-graph

https://www.w3.org/TR/shacl/#data-graph
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ϕ∨ϕ′ instead of ¬(¬ϕ∧¬ϕ′), ∃r.ϕ instead of ≥1 r.ϕ, and ≥n r instead of ≥n r.ϕ
if ϕ is ⊤.SHACL constraints are represented in the form of (shape) constraints,
which are expressions of the form s ← ϕ, with s ∈ S and ϕ a shape expression.
A shape atom is an expression of the form s(a), with s a shape name and a a
node. A shapes graph2 is a pair (C, T ), where C is a set of shape constraints
such that each shape name occurs exactly once on the left-hand side of a shape
constraint, and T is a set of shape atoms, called target set, or simply target.

Non-recursive SHACL. We formally define non-recursive SHACL constraints
as follows: a shape name s directly refers to a shape name s′ in a set of constraints
C, if C has a constraint s← ϕ such that s′ appears in ϕ. We say that s refers to
s′, if s directly refers to s′, or there exists a shape name s′′ such that s refers to
s′′, and s′′ directly refers to s′. A set of SHACL constraints C is non-recursive
if no shape name in C refers to itself.

Evaluation of shape expressions. A (shape) assignment for a data graph G
extends G with a set L of shape atoms such that a occurs in G for each s(a) ∈ L.
The evaluation of a shape expression ϕ over a data graph is defined in terms of
a function J·KI that maps a (complex) shape expression to a set of nodes, and
a property to a set of pairs of nodes. We refer to [3] for more details on the
evaluation of shape expressions.

SHACL validation. There are two semantics for SHACL validation, the clas-
sical (or supported) model semantics from [6] and the stable model semantics
from [3]. Here, we only present the supported model semantics. It was shown
in [3] that both semantics coincide on non-recursive SHACL. Assume a SHACL
document (C, T ) and a data graph G. An assignment I for G is a (supported)
model of C if JϕKI = sI for all s← ϕ ∈ C. The data graph G validates (C, T ) if
there exists an assignment I = G ∪L for G such that (i) I is a model of C, and
(ii) T ⊆ L.

Normal Form. To ease presentation, in the rest of the paper we focus on
normalized sets of SHACL constraint. That is, each SHACL constraint can have
one of the following normal forms:

(NF1) s← ⊤ (NF2) s← B (NF3) s← c
(NF4) s← s1 ∧ · · · ∧ sn (NF5) s← ¬s′ (NF6) s←≥n r.s

′

It was shown in [3], that a set of constrains C can be transformed in polynomial
time into a set of constraints C ′ in normal form such that for every data graph
G and target T , G validates (C, T ) if and only if G validates (C ′, T ). Further,
the normalization may introduce fresh shape names, but it can easily be shown
that C ′ is non-recursive if C is non-recursive.

Example 1. Assume a shape StudentShape (left) and a data graph (right), writ-
ten in Turtle syntax:

: StudentShape a sh : NodeShape ; : Ben : e n r o l l e d I n :C1 .
sh : targetNode : Ben ;

2 https://www.w3.org/TR/shacl/#shapes-graph

https://www.w3.org/TR/shacl/#shapes-graph
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sh : property [
sh : path : e n r o l l e d I n ;
sh : qual i f iedMinCount 1 ;
sh : qua l i f i edVa lueShape [
sh : c l a s s : Course ; ] ] .

The shape states that each StudentShape must be enrolled in at least one course
and should be verified at node Ben. In the abstract syntax, we write the data
graph G = {enrolledIn(Ben,C1)}, the target T = {StudentShape(Ben)}, and
C contains the constraint StudentShape ← ∃enrolledIn.Course The normalized
version C ′ of C contains the constraints StudentShape ← ∃enrolledIn.s and
s ← Course, where s is a fresh shape name. Clearly, extending G by assigning the
shape name StudentShape to Ben does not satisfy the target StudentShape(Ben),
since Ben is not enrolled in any Course. Hence, G does not validate (C, T ).

Answer Set Programming We introduce here some basic notation about
Answer Set Programming (ASP) used throughout the paper and refer to [7] for
more details on the language. We assume countably infinite, mutually disjoint
sets Preds ⊃ C∪P and Var of predicate symbols, and variables, respectively. A
term is a variable from Var or a node from N. The notion of an atom is extended
from RDF atoms here to include expressions of the form q(t1, . . . , tn), where q ∈
Preds is an n-ary predicate symbol and t1, . . . , tn are terms; an atom is ground if
its terms are nodes. A database is a set of ground atoms. An answer set program
consists of a set of rules of the form ψ ← φ, where φ may be a conjunction of
positive and negated atoms, and ψ is a (possibly empty) disjunction of atoms.
We may call ψ the head of the rule and φ the body of the rule. We may write a
rule h1, . . . , hn ← φ instead of a set of rules h1 ← φ, . . . , hn ← φ. Roughly, a rule
is satisfied by a database D in case the following holds: if there is a way to ground
the rule by instantiating all its variables such that D contains the positive atoms
in the body of the instantiated rule and does not contain the negative atoms,
then it contains some atom occurring in the head of the rule. The semantics
of answer set programs is given in terms of stable models. Intuitively, a stable
model for (D, P ), where D is a database and P a program, is a database D′ that
minimally extends D to satisfy all rules in P . We illustrate answer set programs
with an example about 3-colorability.

Example 2. Let D = {edge(a, b), edge(b, c), edge(c, a), N(a), N(b), N(c)} be a
database storing a triangle over the nodes a, b, and c, and let P be a program
with the following rules:

R(X) ∨B(X) ∨G(X)← N(X) ← edge(X,Y ), R(X), R(Y )
← edge(X,Y ), B(X), B(Y ) ← edge(X,Y ), G(X), G(Y ).

P states that every node must be colored with red R, blue B, or green G and
adjacent vertices must not be colored with the same color. Clearly, there are
three possibilities to color the nodes and hence, three answer sets for (D, P )
that minimally extend D to satisfy the rules. E.g. one stable model is M =
D ∪ {R(a), B(b), G(c)}.
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To implement the repair generator we selected Clingo3, which provides additional
features, like optimization functions, that will be present in the repair rules.

3 SHACL Repairs

In this section, we introduce the notion of repairs that we use in this work,
analyze the kind of repairs that may be desirable in practice, and describe the
design choices we will consider for the repair generator we propose. For repairs,
we use the notion introduced in [2], where a repair is a set of facts that are added
or removed from the input data graph so that the resulting graph validates the
input shapes graph. We recall a slightly modified definition here.

Definition 1. A repair problem is a tuple Ψ = (G,C, T ), where G is a data
graph, and (C, T ) is a shapes graph such that G does not validate (C, T ). A
repair for Ψ is a pair (A,D) of two sets of RDF atoms, where D ⊆ G, such that
(G \D) ∪A validates (C, T ).

Note that the original definition of a repair problem in [2] includes a hypothesis
set H, which allows to limit the space of possible additions by imposing the
inclusion A ⊆ H. For simplicity, we do not limit the possible additions here,
i.e. in the sense of [2], we simply let H to be the set of all possible RDF atoms.

When designing a repair generator, we need to make some choices. First, as
also argued in [2], computing all possible repairs is not desirable: we naturally
want the repairs to modify the data graph in a minimal way, i.e. additions and
deletions that are not relevant for fixing the constraint violations should be ex-
cluded. For instance, the repair problem (G,C, T ) in Example 1 can be solved,
among other ways, by (i) adding to G the atom Course(C1 ), (ii) by adding to
G the atoms Course(C2 ) and enrolledIn(Ben,C2), or (iii) by adding to G the
atoms Course(C1 ) and Course(C2 ). Observe that (i) is a repair that is minimal
in terms of the number of modifications that are performed, i.e. cardinality-
minimal. The repair (ii) can also be considered minimal, but in the sense of
subset-minimality: observe that neither Course(C2 ) nor enrolledIn(Ben,C2)
alone suffice to fix the constraint violation. The repair (iii) is not minimal in
either sense, because the addition of Course(C1 ) alone is sufficient to perform
the repair.

Another issue is how to repair cardinality constraints of form (NF6). To
satisfy them, we can either choose to generate new nodes, or we may try to reuse
the existing nodes of the input data graph. There are scenarios where reusing
nodes is not desired as we want to fix the violations while minimally changing
the data graph. Reusing nodes may introduce wrong information from a real-
world perspective and thus lower the quality of data. Consider the constraint
StudentShape ← ∃hasStudID specifying that students must have a student ID
and let the data graph have the atom hasStudID(Ben, ID1 ). To validate the
target {StudentShape(Ann)}, a meaningful repair would be to generate a new

3 https://potassco.org/clingo/

https://potassco.org/clingo/
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value ID as placeholder and add hasStudID(Ann, ID) instead of reusing ID1 .
Such placeholders can be replaced in a later step by the user with meaningful
real-world values.

Unfortunately, forcing the repair generator to always introduce fresh values
for cardinality constraints may sometimes leave out expected (minimal) repairs
and even not produce any repairs at all. Consider the constraint RegisteredCitizen←
∃MainAddress.Address∧ ≤1 MainAddress, stating that registered citizens must
have exactly one main address. Let G = {MainAddress(Ann,Ad1 )} and assume
we want to validate that Ann is a RegisteredCitizen. We may attempt to satisfy
the constraint by adding the atoms MainAddress(Ann,n) and Address(n) for a
fresh node n. However, then Ann would have two main addresses, which is not
allowed. The only way to fix the violation is to reuse the node Ad1 and add
Address(Ann,Ad1 ) to the initial data graph. Also, for the repair problem from
Example 1, mentioned above, by forcing to introduce fresh values we would miss
the intuitive minimal repair that simply adds Course(C1 ). In conclusion, there
are scenarios where reusing existing nodes may be desired and even necessary.
However, to preserve the quality of the data as much as possible, we want to
prioritize the introduction of fresh values whenever possible and reuse existing
constants only when necessary. We study both versions. More precisely, in Sec-
tion 4, we propose a repair generator that always introduces fresh values and in
Section 5 we present the extended version that allows to reuse constants, but
introduces fresh values whenever possible.

4 Generating Repairs

In this section, based on existing works in databases by Bertossi et al. (see e.g.
[4] and references therein), we present an encoding of the repair problem for non-
recursive SHACL to ASP. We are especially interested in minimal repairs. To ease
presentation, we describe here the encoding for a restricted setting, where only
existential constraints of the form s ←≥1 r.s

′, i.e., a special case of cardinality
constraints of form (NF6), are allowed; we label them with (NF6′). In particular,
rules will always introduce fresh values to repair existential constraints. We refer
to Section 5 for the extension that support unrestricted cardinality constraints
of form (NF6) and allows to reuse constants from the input.

4.1 Encoding into ASP

For a repair problem Ψ = (G,C, T ), where C is a set of non-recursive SHACL
constraints in normal form, we construct a program PΨ , such that the stable
models of (G,PΨ ) will provide repairs for Ψ . Following the standard notation
for repairs as logic programs in databases [4], to annotate atoms we will use
special constants: (i) t∗∗ intuitively states that the atom is true in the repair,
(ii) t∗ states that the atom is true in the input data graph or becomes true by
some rule, (iii) t, states that the atom may need to be true and (iv) f states
that the atom may need to be false. Intuitively, the repair program implements a
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top-down target-oriented approach, and starts by first making true all the shape
atoms in the target. From this on, the rules for constraints specified by the shapes
capture violations on the targets in the rule body and propose repairs in the rule
head using the annotations described above. The rules will add annotated atoms
which represent additions and deletions that can be applied to the data graph
to fix the violations. Additions and deletions can interact, eventually stabilizing
into a model that generates a (not necessarily minimal) repair.

For every constraint specified by a shape in the shapes graph, the repair
program PΨ consists of four kinds of rules:
PAnnotation consists of rules that collect existing atoms or atoms that are pro-

posed to be in the repaired data graph.
PRepair consists of rules that repair the constraints by proposing additions and

deletions of atoms.
PInterpretation consists of rules that collect all the atoms that will be in the re-

paired data graph.
PConstraints consists of rules that filter out models that do not provide repairs.

We are ready to describe the repair program.

Adding the shape atoms in the target as facts. First, for each atom s(a) ∈ T , we
add the rule s (a, t∗)←, where s is a fresh binary relation.

PAnnotation. For each class name B and property name p occurring in G and C,
we create a new binary predicate B and ternary predicate p , respectively. We
add the following rules to PΨ :

B (X, t∗)← B(X) p (X,Y, t∗)← p(X,Y )
B (X, t∗)← B (X, t) p (X,Y, t∗)← p (X,Y, t)

PRepair. We present here the rules that participate in PRepair. For each constraint
s← ϕ in C, we add specific rules that consider in the body the scenarios where
s at a certain node is suggested to be true in the repair program or false, and
propose in the head ways to make ϕ true or false, respectively. We note that
the presence of negation in constraints may enforce that a shape atom is false
at specific nodes. We present the repair rules for each normal form that ϕ can
take, that is for each type of constraint of the form (NF1) to (NF6′) and add
rules for both s (X, t∗) and s (x, f).
- If the constraint is of the form (NF1) or (NF3), then we do nothing here and
treat them later as constraints.
- If ϕ is a class name B, that is of form (NF2), then we use the fresh binary
predicate B and add the rules:

B (X, t)← s (X, t∗) B (X, f)← s (X, f)

- If ϕ is of the form s1 ∧ · · · ∧ sn, that is of form (NF4), then we use fresh binary
predicates si and add the rules:

s1 (X, t∗), . . . , sn (X, t∗)← s (X, t∗) s1 (X, f) ∨ · · · ∨ sn (X, f)← s (X, f)
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- If ϕ is of the form ¬s′, that is of form (NF5), we add the rules:

s′ (X, f)← s (X, t∗) s′ (X, t∗)← s (X, f)

(*) If ϕ is of the form ∃r.s′, i.e., of form (NF6′), then we have to consider the
scenarios where r is a property name p or an inverse property p−. For the case
where s is suggested to be true at X, i.e., for s (X, t∗), we add a new p-edge
from X to a fresh node and assign the node to s′. To this end, we use a function
@new(s,X, p), which maps a shape name s, a node X and a property name p
to a new unique value Y . For the case where s is suggested to be false at X,
i.e., for s (X, f), we add disjunctive rules that, for all p-edges from X to some
Y with s′ true in Y , makes one of these atoms false. We add the rules for r = p.
For r = p− the rules are analogously obtained by just swapping the variables in
the argument of p.

s′ (@new(s,X, p), t∗), p (X,@new(s,X, p), t)← s (X, t∗)

p (X,Y, f) ∨ s′ (Y, f)← s (X, f), p (X,Y, t∗)

PInterpretation. For every class name B and property name p occurring in the
input, we add the following rules:

B (X, t∗∗)← B (X, t∗), not B(X, f)

p (X,Y, t∗∗)← p (X,Y, t∗), not p(X,Y, f)

Intuitively, these rules will generate the atoms that will participate in the re-
paired data graph, that is the atoms that were added to the data graph, and
those atoms from the data graph that were not deleted by the rules.

PConstraints. We add to PΨ sets of rules that will act as constraints and filter
out models that are not repairs.
(1) For each constraint of the form s← ⊤, i.e., of form (NF1), we add← s (Y, f).
(2) For each constraint of the form s← c, i.e., of form (NF3), we add the rules:

← s (X, t∗), X ̸= c ← s (c, f)

(3) For each class name B and property name p in the input, we add:

← B (X, t), B (x, f) ← p (X,Y, t), p (X,Y, f)

Roughly, (1) and (2) ensure that models preserve constraints of type (NF1)
and (NF3) which cannot be repaired, and (3) ensures that no atom is both
inserted and deleted from G.
The atoms marked with t∗∗ in a stable model of PΨ form a repaired data

graph that validates (C, T ).

Theorem 1. Assume a repair problem Ψ = (G,C, T ). For every stable model
M of (G,PΨ ), the data graph G′ validates (C, T ), where G′ is the set of all atoms
of the form B(a), p(a, b) such that B (a, t∗∗) and p (a, b, t∗∗) are in M .
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We note that this theorem carries over to all the extensions and the version with
cardinality constraints and constants we propose in this paper. It is easy to see
that, since the rules are non-recursive in essence4, the number of fresh nodes that
can be introduced in a stable model is in the worst-case exponential in the size
of the input constraints. However, we do not expect to see this behavior often
in practice. We illustrate the repair program with a representative example.

Example 3. Consider the repair problem Ψ = (G,C ′, T ) from Example 1, where
C ′ is the normalized version of C. We construct the repair programΠΨ as follows.

For PAnnotation we use fresh predicates enrolledIn and Course . The rules for
Course are Course (X, t∗)← Course (X, t), and Course (X, t∗)← Course(X);
the rules for enrolledIn are analogous. Intuitively, these rules will initially add
the atom enrolledIn (Ben,C1, t

∗) to the stable model. For PRepair, we add the fol-
lowing rules, where F stands for the function @new(StudentShape, X, enrolledIn).

enrolledIn (X,F, t), s (F, t∗)← StudentShape (X, t∗).

enrolledIn (X,Y, f) ∨ s (Y, f)← StudentShape (X, f), enrolledIn (X,Y, t∗)

Course (X, t)← s (X, t∗)
Course (X, f)← s (X, f)

Intuitively, these rules together with the ones in PAnnotation will add to the
stable model the atoms enrolledIn (Ben, new1, t

∗) and Course (new1, t
∗), for a

fresh node new1. For PInterpretation, we add: Course (X, t∗∗) ← Course (X, t∗),
not Course (X, f) for Course and proceed analogously for enrolledIn . For
PConstraints, we add the (constraint) rule: ← Course (X, t),Course (X,Y, f) for
Course and proceed analogously for enrolledIn . Since no atom labelled with
‘f ’ is generated by the rules, then the three atoms mentioned above will be
annotated with ‘t∗∗’ by the rules in PInterpretation.

Thus, there is one stable model with the atoms enrolledIn (Ben,C1, t
∗∗),

enrolledIn (Ben, new1, t
∗∗), and Course (new1, t

∗∗). The corresponding atoms
enrolledIn(Ben,C1), enrolledIn(Ben, new1) and Course(new1) will form the re-
paired data graph G′ that validates (C ′, T ). Hence, the only repair is (A, ∅),
where A contains {enrolledIn(Ben, new1) and Course (new1)}.

Additions and Deletions We want to represent repairs as sets of atoms that
are added to and deleted from the input data graph. To achieve this, we use two
fresh unary predicates add and del, and we add rules that “label” in a stable
model with the label add all the atoms with ‘t∗∗’ that were not in the data
graph, and label with del all the atoms from the data graph that are annotated
with ‘f ’. To this aim, for every class name B and property name p in the input,
we introduce a function symbol (with the same name) whose arguments are the
tuples of B and p, respectively. We show the rules for class names; the rules for
property names are analogous.

4 Technically speaking, the repair rules above may be recursive. However, if the anno-
tation constants t, f, t∗, t∗∗ are seen as part of the predicate’s name (instead of being
a fixed value in the last position), then the rules are non-recursive.
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add(B(X))← B (X, t∗∗), not B(X) del(B(X))← B (X, f), B(X)

4.2 Generating Minimal Repairs

We are interested to generate cardinality-minimal repairs, i.e. repairs that make
the least number of changes to the original data graph. More formally, given a
repair ξ = (A,D) for Ψ , ξ is cardinality-minimal if there is no repair ξ′ = (A′, D′)
for Ψ such that |A| + |D| > |A′| + |D′|. As noted already in Section 3, repairs
produced by our repair program built so far may not be cardinality-minimal, and
this holds already for constraints without existential quantification. Consider the
following example.

Example 4. Let (G,C, T ) be a repair problem, where G is empty, T = {s(a)},
and C contains the constraints: s← s1∨ s2, s1← A, and s2← A∧B, where A
and B are class names, and s, s1, s2 are shape names. To ease presentation, the
constraints are not in normal form and s1 ∨ s2 is a shortcut for ¬(¬s1 ∧ ¬s2).
Clearly, to validate the target s(a) the repair program will propose to make
s1(a) or s2(a) true. Hence, there will be two stable models: one generates a
repair that adds A(a), i.e., contains add(A(a)), and the other adds both A(a)
and, the possibly redundant fact, B(a), i.e., contains add(A(a)) and add(B(a)).

To compute cardinality-minimal repairs, which minimize the number of ad-
ditions and deletions, we introduce a post-processing step for our repair program
that selects the desired stable models based on a cost function. We count the
distinct atoms for additions and deletions and add a cost off each of them. The
repair program should only return stable models that minimize this cost. More
specifically, we add the #minimize{1,W : add(W ); 1, V : del(V )} optimization
rule to PΨ , which uses a cost 1 for each addition or deletion. We can also change
the cost for additions and deletions depending on different repair scenarios, where
one could have a higher cost for additions over deletions or vice versa.

4.3 Repairing Maximal Subsets of the Target Set

In this section, we discuss the situation where it is not possible to repair all of the
target shape atoms, e.g., because of conflicting constraints in shape assignments
to these target shape atoms or because of unsatisfiable constraints. Consider for
instance the constraint s ← B ∧ ¬B, where B is a class name. Clearly, there
is no repair for any shape atom over s in the target, since there is no way to
repair the body of the constraint. Similarly, consider the constraints s1 ← B
and s2 ← ¬B and targets s1(a) and s2(a); in this case adding B(a) violates
the second constraint and not adding it violates the first constraint. In both
scenarios, the repair program will return no stable model, and hence, no repair.
However, it still might be possible to repair a subset of the shape targets. In
practice, we want to repair as many targets as possible. To support such a
scenario, we introduce the concept of maximal repairs, which is a relaxation of
the previous notion of repairs.
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Definition 2. Let Ψ = (G,C, T ) be a repair problem. A pair (A,D) of sets of
atoms is called a maximal repair for Ψ if there exists T ′ ⊆ T such that (i)
(A,D) is a repair for (G,C, T ), and (ii) there is no T ′′ ⊆ T with |T ′′| > |T ′|
and (G,C, T ′′) having some repair.

To represent this in the repair program, we add rules to non-deterministically
select a target for repairing or skip a target if the repair program cannot repair
it. This approach could be viewed similar in spirit to SHACL’s sh:deactivated
(https://www.w3.org/TR/shacl/#deactivated) directive that allows for deac-
tivating certain shapes, with the difference that we ”deactivate” targets instead
of whole shapes which are automatically selected by the repair program based on
optimization criteria.To this end, for each shape atom s(a) in the input target set
T , instead of adding all s (a, t∗) as facts, we add rules to non-deterministically se-
lect or skip repair targets. If there are no conflicting or unsatisfiable constraints,
then the stable models provide repairs for all the targets. However, if a repair of
a target shape atom is not possible, because shape constraints advise t as well
as f , then the repair program will skip this target shape atom and the stable
models will provide repairs only for the remaining shape atoms in T . We intro-
duce two predicates actualTarget and skipTarget , where actualTarget represents
a shape atom in the target that will be selected to repair, whereas skipTarget
represents a shape atom in the target that is skipped and will not be repaired.
For each s(a) in T we add the rules:

actualTarget(a, s) ∨ skipTarget(a, s)← s(a) s (a, t∗)← actualTarget(a, s)

We want to first repair as many target shape atoms as possible, and then min-
imize the number of additions and deletions needed for these repairs. To this
end, we add the #minimize{1@3, X, s : skipTarget(X, s)} optimization rule
to PΨ to minimize the number of skipped targets and the #minimize{1@2,W :
add(W ); 1@2, V : del(V )} rule to minimize the additions and deletion. Note that
we choose a higher priority level for minimizing the number of skipped targets
(1@3) than for minimizing additions and deletions (1@2). This rule minimizes
the skipTarget atoms and therefore maximizes the actualTarget atoms based on
the cardinality.

Example 5. Let (G,C, T ) be a repair problem, whereG = {enrolledIn(Ben,C1)},
T = {StudentShape(Ben),TeacherShape(Ben)}, and C contains TeacherShape←
∃teaches ∧ ¬StudentShape and StudentShape← ∃enrolledIn.Course. Thus, Ben
is a target node for both StudentShape and TeacherShape. However, the first
constraint states that a node cannot be a TeacherShape and StudentShape at the
same time, which causes a contradiction when applied to Ben. This causes the
repair program to have no model. By applying the optimizations for maximal
repairs, it will result in the target selection: actualTarget(Ben, StudentShape),
and skipTarget(Ben,TeacherShape). The repair program skips the shape atom
TeacherShape(Ben), so that we at least have a repair for StudentShape. For this
repair program, this is the maximum possible number of targets. Changing the
optimization cost to skip targets allows to specify a preference among targets or
shapes, thereby adapting to different repair scenarios.

https://www.w3.org/TR/shacl/#deactivated
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5 Extension with Cardinality Constraints and Constants

In Section 4, we proposed a repair program for a restricted setting with car-
dinality constraints of the form s ←≥n r.s′ with n = 1. We now explain the
extension to support cardinality constraints with unrestricted n, i.e., of form
(NF6). In addition to supporting the generation of new values, we now also al-
low to reuse existing constants from the input, which may even be necessary
to generate some repair. E.g., consider an empty data graph G, the set of con-
straints C = {s ← ∃p.s′, s′ ← c}, and the target T = {s(a)}. Since the second
constraint forces the selection of the constant c when generating a value for p,
the only possible repair for (G,C, T ) is to add the atom p(a, c). However, we
prioritize picking a fresh node over an existing one if the latter is not necessary.
We construct a repair program P ′

Ψ for a repair problem Ψ = (G,C, T ) whose
stable models provide repairs for Ψ . In particular, P ′

Ψ contains all the rules from
PΨ , except for the rules marked with (*) in PRepair, i.e., the rules for existential
constraints, which will be replaced by the rules described here.

Repairing cardinality constraints. If ϕ is of the form ≥n p.s
′, that is of form

(NF6), then for repairing the case s (X, t∗) we need to insert at least n p-edges to
nodes verifying s′. We first collect all nodes from C that are part of constraints
to make sure that all necessary nodes are available to be picked for additions of
property atoms. For every node c in C, we add: const(c)←

- For the case where s is suggested to be true at X, i.e., for s (X, t∗), we add
the following rules.

choose(s,X, p, 0) ∨ · · · ∨ choose(s,X, p, n)← s (X, t∗) (2)

p (X,@new(s,X, p, 1..i), t)← choose(s,X, p, i), i ̸= 0 (3)

0 {p (X,Y, t) : const(Y )} |const(Y )| ← s(X, t∗) (4)

n {s′(Y, t∗) : p (X,Y, t∗∗)} max(n, |const(Y )|)← s(X, t∗) (5)

In the following, we explain the rules (2) - (5) in detail. For adding atoms over
p to satisfy ≥n p.s

′, we either generate fresh nodes using the function @new or
we pick from collected constants. For generating atoms with fresh nodes, we add
a disjunctive rule (2) and use a fresh choose predicate, which is used to non-
deterministically pick a number from 0 up to n for adding atoms over p to fix the
cardinality constraint. To add the actual atoms, we add a rule (3) that produces
this number of atoms using the @new function, which will generate a new unique
value Y for every (s,X, p, i) tuple with s a shape name, p a property name, and
i ∈ {1 . . . n}. With these two rules, we can generate as many atoms over p as
necessary to satisfy the cardinality constraint. Similarly to adding atoms with
fresh nodes, we can also pick constants from C. We add a rule (4) to pick a
number of 0 up to the maximum number of constants – using Clingo’s choice
rules, which allow to be parameterised with a lower and upper bound of elements
from the head to be chosen – which will only pick constants if either required,
because of other constraints, or needed by the cardinal by adding optimization
rules. In addition to adding atoms over p, we need to satisfy s′ on a number of
n nodes. We add a rule (5) to pick at least n, but might pick up to as many
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values as there are constants, so that we can satisfy the cardinality as well as
any constraints that require specific constants. Note that an expression of the
form l {W : V } m intuitively allows to generate in the model a number between
l and m W -atoms whenever V -atoms are also true.

- For the case where s is suggested to be false at X, i.e., for s (X, f), we pick
from all atoms p(X,Y ) to either delete the atom or falsify s′ at Y . We add a
disjunctive rule to pick one or the other (but not both).

ℓ {ψ1 ∨ ψ2} ℓ← s (X, f),#count{Y : p (X,Y, t∗)} = m,m > (n− 1)

where ℓ = m − (n − 1), ψ1 is the expression p (X,Y, f) : p(X,Y ), not s′ (Y, f)
and ψ2 is s′ (Y, f) : p (X,Y, t∗), not p (X,Y, f). To make s false at X, we have
two disjunctive options that we can falsify. The first option is to falsify the p
atom. This can only be selected if s′ was not falsified at node Y . The second
option is to falsify the s′ at node Y , which in return should only be possible if
the p atom was not falsified. By picking m− (n− 1) options, we make sure that
only the maximum allowed cardinality will be in the repaired graph.

Constant Reuse Optimization. The rules above are allowed to pick from any
constants that are needed to satisfy constraints in the current model. However,
we want to pick a constant from C only if it is necessary to satisfy a constraint. To
achieve this, for every constraint of the form s←≥n p.s

′, that is of form (NF6),
we add the #minimize{1@1, X, Y : p (X,Y, t), const(Y )} optimization rule to
P ′
Ψ that minimizes the use of constants among the different minimal repairs.

We choose a lower priority level (1@1) for minimizing the use of constants after
minimizing additions and deletions with a priority (1@2) and after minimizing
the number of skipped target atoms (1@3). We first want to have minimal repairs
and then among them to pick the ones with minimal number of constants. Note
that this encoding may produce different repairs from the encoding in Section 3
on the same example as illustrated below.

Consider again Example 3. The repair program P ′
Ψ will generate three repairs.

One repair will only add Course(C1). Intuitively, rule (2) adds choose(s,X, p, 0)
to the model, rule (3) and (4) will not add atoms, and rule (5) adds s (C1, t∗)
which together with the other rules treated in Example 3 add Course (C1, t), and
Course(C1, t∗∗), and hence . The second repair will add enrolledIn(Ben, new1)
in addition to Course(C1) because of picking i = 1 in rule (2), and generating a
fresh value new1 in (3), and picking still C1 for s . The third repair will assign
new1 to s , thus resulting in the repair (A, ∅) from Example 3. The optimization
feature will return only the minimal repair that only adds Course(C1).

6 ASP Implementation

Repair Program. We developed a prototypical system for implementing SHACL
repair programs using Java programming language and the ASP system Clingo.The
prototype parses an RDF representation of a SHACL shapes graph and a data
graph and transforms them into a repair program as a set of Clingo rules and
facts. The repair program can then be executed using Clingo, which returns the
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stable models with (sub)sets of repaired shape target nodes and sets of additions
and deletions as repairs for the data graph.

Unit Test Suite. To verify the implementation, we created a unit test suite
with minimal examples that covers all the supported shape expressions. We
grouped the test cases in four groups for class constraints, property constraints,
value constraints and constraints with conflicts either within a shape or between
multiple shape assignments. Each group includes expressions with conjunction,
disjunction and negation. The unit test suite consist of a total of 43 test cases.

Data Shapes Test Suite. We applied the repair program to 16 selected test
cases of the official SHACL data shapes test suite5. The selection was done based
on the supported shape expressions of the repair program. All the selected tests
were successful and repairs provided in the case of no conflicting constraints.6

7 Conclusion

We presented an approach to repair a data graph so that it conforms to a set of
SHACL constraints. We first analyze the type of repairs that may be desirable
in practice. To generate the repairs, inspired by existing work in databases, we
encode the problem into an ASP program. We provide encodings for a restricted
setting, which forces to introduce a new value to satisfy existential constraints,
and for the extended setting that allows to reuse also existing constants. The
optimizations as part of our approach were introduced with a view on practical
scenarios, where we not only want to have minimal change, but also to avoid
creating new data that is not sound from a real-world perspective. In case not
all the shape targets can be repaired, we optimize to repair as many of them as
possible. With the repair program and the ASP implementation, we have laid
the foundation for bringing repairs into practical scenarios, and thus improving
the quality of RDF graphs in practice.

Future work. Several tasks remain for future work. For the practical side, the
next step will be to select use-cases where we can apply the repairs and evaluate
the practical feasibility and explore repair quality and scalability. For the more
technical direction, we plan to extend the approach to support SHACL property
paths. Another direction is to support recursive SHACL constraints. They are
also challenging because recursion combined with the introduction of fresh nodes,
may cause non-termination of the repair process, i.e. an infinite repair might be
forced. A related direction is to extend our approach to the so-called class-based
and property-based targets. These targets bring implicit recursion to the repair
problem, even when the constraints are non-recursive as in this paper, which
makes dealing with such targets as challenging as the full recursive case.
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5 https://w3c.github.io/data-shapes/data-shapes-test-suite/
6 Our prototype, test suites, and statistics are available from the authors upon request.
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