
Crawley: A Tool for Web Platform Discovery
Daniil Dobriy1,∗, Axel Polleres1

1Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract
Crawley, a Python-based command-line tool, provides an automated mechanism for web platform
discovery. Incorporating capabilities such as Search Engine crawling, web platform validation and
recursive hyperlink traversal, it facilitates the systematic identification and validation of a variety of web
platforms. The tool’s effectiveness and versatility are demonstrated via two successful use cases: the
identification of Semantic MediaWikis instances, as well as the discovery of Open Data Portals including
OpenDataSoft, Socrata, and CKAN. These empirical results underscore Crawley’s capacity to support
web-based research. We further outline potential enhancements of the tool, thereby positioning Crawley
as a valuable tool in the field of web platform discovery.

Keywords
Web Crawling, Search Engine Automatisation, Web Platform Discovery, Open Data Portals, MediaWiki

1. Introduction

The field of web platform discovery, which involves the systematic identification of websites,
is a research priority for discovering Linked Open Data (LOD) [1] and accessing the factual
extent of the Semantic Web. This subject intersects with web crawling, an automated process
concerned with the traversal and extraction of web content, and Search Engine scraping.
Investigations in the field [2] have presented scalable algorithms for pattern mining, sig-

nificantly enhancing the efficiency of media-type focused crawling. Additionally, efforts like
MultiCrawler have proposed pipeline architectures for more effective crawling and indexing of
Semantic Web data [3]. Other notable tools, such as Apache Any231, offer extraction libraries
and web services that transform structured data from HTML and other web documents to more
useful formats. The relevance of the application of such tools is illustrated by services like
Portalwatch [4] and WikiApiary2, which monitor the deployment and usage of specific Open
Data and Wiki platforms on the web. Finally, due to the inherent cost of the platform and
dataset discovery, services like LOD Laundromat [5] and LOD Cloud3 exist to provide an entry
point and catalogue linked datasets.
In the case of WikiApiary, the service provides a comprehensive repository, which tracks

and catalogues Wikis and their respective metadata on the web. Most notably, WikiApiary

ISWC 2023 Posters and Demos: 22nd International Semantic Web Conference, November 6–10, 2023, Athens, Greece
∗Corresponding author.
Envelope-Open daniil.dobriy@wu.ac.at (D. Dobriy); axel.polleres@wu.ac.at (A. Polleres)
Orcid 0000-0001-5242-302X (D. Dobriy); 0000-0001-5670-1146 (A. Polleres)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://any23.apache.org/
2https://wikiapiary.com
3http://lod-cloud.net

mailto:daniil.dobriy@wu.ac.at
mailto:axel.polleres@wu.ac.at
https://orcid.org/0000-0001-5242-302X
https://orcid.org/0000-0001-5670-1146
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://any23.apache.org/
https://wikiapiary.com
http://lod-cloud.net


also collects Semantic Wikis: Semantic MediaWiki (SMW), Wikibase and Cargo instances, -
presenting an ample and under-researched facet of LOD. Despite its extensive coverage and
reliance on bots (“bees”) to keep the metadata up-to-date, the catalogue is manually curated
through community submissions, which could potentially introduce gaps in data collection.
Another specific case, Portalwatch - an open-source project that aims to collect and monitor
Open Data Portals, including portal metadata - also shares the same limitation. This constraint
underscores the need for automated discovery tools to ensure a more exhaustive enumeration
and characterisation of web platforms such as Semantic Wikis or Open Data Portals. The
proposed tool aims to enhance and ease web platform discovery in this area.

The structure for the remainder of the paper is as follows: Section 2 introduces the architecture
and features of the tool and Section 3 provides an overview of two successful use cases of Crawley.
Finally, Section 4 draws conclusions and discusses potential directions for future work.

2. Architecture and Features

Figure 1: Crawley Architecture Diagram

Crawley is an open-source Python-engineered command-line tool designed to streamline the
discovery and validation of specific technological platforms. It is currently available together
with documentation on GitHub4 under a CC-BY 4.0 license5. Figure 1 illustrates the high-level
architecture of the tool. The tool extends various Search Engine APIs (SERP API, BING API) as
a reliable solution to Search Engine querying. While the use of APIs subjects the tool to rate
limits, the tool supports a multi-user approach.6 Thus, the search is performed with Google,
Bing, Yandex, Yahoo, DuckDuckGo, Baidu and Naver.

The user can initiate a search event, which is defined by a Search Engine (i.e., Google, Bing,
Yandex, Yahoo, DuckDuckGo, Baidu, Naver) and the query itself.7 The tool then queries the
Search Engines, performing result pagination until all the query results are exhausted and prints

4http://purl.org/crawley
5http://creativecommons.org/licenses/by/4.0/
6cf. documentation for the tool on http://purl.org/crawley/readme
7cf. ibid

http://purl.org/crawley
http://creativecommons.org/licenses/by/4.0/
http://purl.org/crawley/readme


the actual number of unique sites, giving the user a heuristic estimation of how prodigious a
certain query-Search Engine combination is, and aggregates the search results in the ./results
folder. Although the queries can be formulated freely, we recommend using a subset of markers
defined in the paragraph below that have a probability of being indexed by Search Engines (i.e.,
text snippets and image annotations, but not code excerpts). We observe a trade-off pattern
whereby more general queries lead to more results, but fewer validation hits in the end, and
more specific queries to fewer results, but a larger proportion of hits, which gives merit to
formulating both general and specific queries.

The results/platform validation process with Crawley begins with the user identifying text/-
code snippets commonly found on sites using a particular technology of interest: ”Powered by
Semantic MediaWiki”, ”CKAN API”, ”Socrata API” as well as components of URL commonly
used by a specific platform (e.g., .../dataset). We designate these as markers. Having identified
possible markers and defined them in the configuration8, the user can initiate a validation phase,
whereby the tool requests HTML contents for the collected search results and then matches
them against the markers, returning the total number of validation hits for each platform type
and producing a validation report.
Finally, as a full-fledged crawler, the tool is able to recursively extract further links from

validated sites. This is a useful feature which relies on the fact that similar platforms often
contain hyperlinks to each other. The extracted links are then treated as search results in the
pipeline and can be validated further, whereby previous HTML collection and validation events
as well as results are cached for efficiency.

3. Use Cases

This section presents two successful use cases of Crawley, motivated by the need to discover
and catalogue a broader range of Semantic Web data: Semantic Wikis and Open Data Portals.

3.1. Semantic Wiki Discovery

The first use case revolves around the discovery of Semantic Wikis, specifically Semantic
MediaWikis, not captured byWikiApiary. To this end, a search (without recursive link collection)
and validation have been performed with Crawley using the Bing Search Engine.
A set of custom markers has been identified in association with Semantic Wikis:

<meta name="generator" content="MediaWiki"
<link rel="ExportRDF"
Powered by MediaWiki

However, as noted before, only ”Powered by MediaWiki” was then used for the queries as
other snippets are not indexed by Search Engines. Additional queries were therefore devised:
”MediaWiki”, ”Semantic MediaWiki”, and ”Semantic Wiki”.

Following this approach, 204 novel SMWs were discovered which were previously not cata-
logued by WikiApiary (which catalogues a total of 627 SMWs). The resulting catalogue has been

8cf. documentation for the tool on http://purl.org/crawley/readme

http://purl.org/crawley/readme


then used for the construction of a corpus of small and medium domain-specific Knowledge
Graphs extracted from Semantic MediaWikis.

3.2. Open Data Portals Discovery

The second use case involves the identification of Open Data Portals. A search, a 2-step recursive
link collection and validation have been performed with Crawley using all available Search
Engines. Although the use case targeted multiple platforms (CKAN, OpenDataSoft, Socrata), we
illustrate the defined markers specifically for OpenDataSoft :

BRAND_HOSTNAME: \"opendatasoft.com
ods.core.config
ods.minimal
ods.core.config

The queries used (as none of the markers is presumed to be indexed by SEs) were: ”Open-
DataSoft”, ”© OpenDataSoft” and ”.opendatasoft.com”. Following this approach, over 500 Open
Data Portals, i.e., more than twice as many Open Data Portals could be identified as currently
collected by the the original Portalwatch (256).

4. Conclusion and Future Work

In this work, we presented a novel tool for web platform discovery and illustrated its use in
successful 2 real-life use cases. Thus, Crawley is both successful in standalone web platform
discovery as it is for the extension of existing manually curated catalogues.

The promising areas for future work address the limitations of the current implementation of
the tool and include 1) parallelizing requests to web resources instead of sequentially processing
them, 2) implementing standalone Search Engine crawling and 3) enabling automatic marker
discovery, which could greatly increase the efficiency of the discovery process, positioning
Crawley as an increasingly valuable asset for comprehensive web platform discovery. We also
plan to apply the tool to discover and monitor more Semantic Web resources, such as Wikibase
instances and SPARQL endpoints.

Acknowledgments

This work is part of a project funded by the WU Anniversary Fund of the City of Vienna.

References

[1] C. Bizer, T. Heath, T. Berners-Lee, Linked data: The story so far, in: Semantic services,
interoperability and web applications: emerging concepts, IGI global, 2011, pp. 205–227.

[2] J. Umbrich, M. Karnstedt, A. Harth, Fast and scalable pattern mining for media-type focused
crawling, KDML (2009) 119.



[3] A. Harth, J. Umbrich, S. Decker, Multicrawler: A pipelined architecture for crawling and
indexing semantic web data, in: The Semantic Web-ISWC 2006: 5th International Semantic
Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006. Proceedings 5, Springer,
2006, pp. 258–271.

[4] J. Umbrich, S. Neumaier, A. Polleres, Towards assessing the quality evolution of open
data portals, in: Proceedings of ODQ2015: Open Data Quality: from Theory to Practice
Workshop, Munich, Germany, 2015.

[5] W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, S. Schlobach, Lod laundromat: a
uniform way of publishing other people’s dirty data, in: The Semantic Web–ISWC 2014:
13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part I 13, Springer, 2014, pp. 213–228.


	1 Introduction
	2 Architecture and Features
	3 Use Cases
	3.1 Semantic Wiki Discovery
	3.2 Open Data Portals Discovery

	4 Conclusion and Future Work

